
REMEMBER  THE TITLE HERE IS ALL CAPS!!!

COLLABORATING AGENTS
MULTIAGENT SYSTEMS AND WHEN TO USE THEM

Dr Egor Kraev, Head of AI, Wise
egor.kraev@wise.com

What is this workshop about

● The hype around multi-agent systems
keeps growing

● Hardly a week passes without another
agent framework being announced
○ I am also guilty of one -

motleycrew.ai
● Each seems to do things slightly

differently
● How do you navigate this complexity?

Itʼs all very simple really

● There is only a handful of basic
patterns for agent interaction

● Many of the new patterns are just old
patterns, but with an LLM inside

● This workshop will walk you through
the different patterns and reasons
you might want to use them - or not

REMEMBER  ALL CAPS HERE!!!

WAYS TO USE
AN LLM

Straight call into an LLM

● Text (and possibly images, sound) in → text
(and possibly images etc) out

● Problem 1 An LLM only aware of the data
used during its training, so no current
events or internal documents

● Problem 2 Even though prompt size is no
longer a formal limitation in practice, LLMs
so far struggle to extract information well
from large prompts

Retrieval-Augmented
Generation RAG

Pre-retrieve relevant data from web or internal
storage, add it to the prompt, feed it to the model in
a single call

This allows the LLM to answer questions about data
never seen in training

RAG challenges

● Have to carefully select the
documents to avoid over-large
prompts

● Many, many possible tricks for
selecting the documents, no good
standard solution yet

● What if the answer is that you should
now look for other information
elsewhere?

Enter LLM agents

Yes that picture was created using ChatGPT

Agents

An LLM agent is some sort of a loop that can use an
LLM's outputs to call other software and fetch additional
data, and feed the results back to the LLM, repeating
that cycle until an objective is achieved

The definition is vague because it can be (and is)
implemented in quite different ways by different
frameworks

Basic agent pattern

● Tools: ways to interact with rest of the world
● Agent: an LLM whose prompt tells it what tools are available.

Can ask to use them (eg to run code it has generated)
● Agent executor: Has access to the tools that LLM is aware of,

calls them when the LLM asks, and passes results back

Simplified representation of
tool-calling pattern

Major agent types

● Planning
○ First list the steps to take, then do them

one after another
● ReAct

○ A “reflect - act - observe resultsˮ loop
● Chain of Thoughts

○ Reason about the problem step by step
● Tree of Thoughts, Graph of thoughts, …

○ Build/walk graphs of reasoning steps,
until solution reached

REMEMBER  ALL CAPS HERE!!!

WHEN WOULD
YOU USE AN

AGENT?

When youʼre not sure ahead
of time what tools youʼll need
to call, with what inputs

Agents are useful when you need to first evaluate the
incoming (potentially RAG-enriched) inputs and then do
further steps based on the outcome

● Multi-purpose agents that can use multiple tools,
depending on what the user asks for

● Web searches for the terms that were only determined
from the enriched context

● LLM converts user question into SQL, tool runs the
query

● Math operations on intermediate outputs

Ask for more information
dynamically

● LLM gets a question within the prompt,
together with some context, then calls a
retrieval tool with additional queries derived
from these

● As opposed to hard-wired enrichment in the
basic RAG pattern

● Example: multi-step research agent

https://motleycrew.readthedocs.io/en/latest/examples/research_agent.html

REMEMBER  THE TITLE HERE IS ALL CAPS!!!

ADVANCED TOOL
USAGE PATTERNS

Agents can be used as tools

Agent using another agent as a tool
● Parent agent only gets the final result of the

subtask it gives to the tool agent

○ Smart tool/LLM tool
○ Writer-critic
○ Big picture vs detail
○ Validation loop

Smart tool

● Specializes in a task that itself needs
a dedicated prompt, for example
○ Image generation
○ Text retrieval based on reasoning

rather than similarity

Writer - critic

● One agent writes text or code, another
one critiques it and gives improvement
recommendations, iterating if needed

● Can have multiple critics if want to
optimize the text according to several
criteria

Big picture vs detail

An agent tracks the master plan, delegates
subtasks to execution agents, for example
● Story outline vs plotting of individual

chapters writing of paragraphs in a
consistent style

● Overall software project plan and
diagrams vs writing individual bits of
code

Validation loop with feedback

Another frequent use for agents is when the output
might need several iterations to get right.

● LLM writes code to solve a problem
● Has it executed by a PythonREPL tool
● Gets back the results, including errors
● In case of errors or bad results, tries again
● Once code runs as planned, returns

Forced validation pattern

● From the point of view of the agent, looks like tool
calling

● Tool validates inputs and returns them directly if
successful

● If validation fails, reasons are returned to the agent
● Agent can only return results via the tool call
● Natively implemented in motleycrew.ai

https://motleycrew.readthedocs.io/en/latest/examples/validating_agent_output.html

REMEMBER  ALL CAPS HERE!!!

WHEN IS AN
AGENT NOT

ENOUGH?

Prompt engineering vs
flow engineering

LLMs have trouble dealing with too many
different instructions squeezed into one
prompt, the trick to making them work is
splitting the task into many small, logically
simpler steps, and run them in the right order

This is known as flow engineering (see
AlphaCodium on GitHub for details)

Example: contract evaluation

● We at Wise needed to build a tool to evaluate the
compliance of vendor contracts with our guidelines

● Some two dozen guidelines to evaluate each contract
against

● With all guidelines and the whole contract in a single
prompt, it ignored half the guidelines

● When we did a for-loop over the guidelines, GPT4
‘foundʼ violations of each one (eagerness)

● When evaluating a single guideline against the whole
contract text, it made silly mistakes such as saying
3%7%

Example: how we solved it

● First do a for loop over all the guidelines asking
whether a given guideline is even relevant

● Then a loop over all relevant guidelines, just
extracting the text chunks LLM thinks are in violation

● Then for each text chunk feed just the chunk and
the guideline into the prompt, re-assess violation
○ This performed much better than the same task

when feeding in the whole contract text
● Then for the chunks deemed in violation, generate

proposed wording

