
REMEMBER  THE TITLE HERE IS ALL CAPS!!!

WHAT IS THE
NEXT STEP

BEYOND
AGENTS?

Compound systems

“We define a Compound AI System as a system that
tackles AI tasks using multiple interacting componentsˮ

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-sy
stems/

Make them nested!

● Event-driven graphs can get large
and hard to manage

● To make them easier to manage, and
reason about, make them
hierarchical: let some of the nodes
themselves be event flow graphs
(with exactly one input and output
node)!

Are nested, maybe cyclical
event computation flows all
you need?
In principle, any instance of business logic (at
least, that I can think of) can be expressed as
nested event computation flows, with some
nodes making LLM calls

So is it useful to reason in terms of agents at all,
or is it all just graphs?

Is the agent concept useful?

I would argue it is!

● Having to express everything as an explicit
graph leads to the Turing-complete swamp,
where everything is possible and nothing is
easy

● Communication: just like with software
architecture patterns, calling certain kinds
of sub-graphs “agentsˮ makes it easier to
reason about, and communicate the intent
of oneʼs logic

My mental model: agents are
just cyclical subgraphs in the
event propagation graph!

Do you need other kinds of
cycles in your graph?
● I have a hard time imagining a practical

business flow that canʼt be represented by a
combination of
○ An overall DAG flow
○ Tool-calling agents as nodes
○ Forced validation loops as nodes
○ Agents using any nodes as tools

● Do you have a counterexample? If so, Iʼd love
to hear about it!

REMEMBER  ALL CAPS HERE!!!

HOW MUCH OF
THIS IS NEW?

A single agent seen from
the outside is just a
transform
● Tool usage is function calling
● Return-direct tool calling with validation

is new-ish, but it's a local pattern inside
the agent, from outside the agent using it
is just a transform

State machines

● Have been around forever, eg Order
Management Systems in finance

● Often simple enough to code by hand, so
Iʼm unaware of standard frameworks for
them

Event-driven calculation

● Another thing that has been there
forever
○ Akka, “Actorsˮ

● LllamaIndex Workflows have nearly
identical semantics to Faust(link)

● For calculation DAGs, there is Spark,
Flink, Airflow, …

So what is really new?

● Natural language (or code) as inputs
○ Including transforming natural

language into structured data
● Natural language as instructions
● Natural language (or code) as output
● A modest degree of resilience/ad hoc

error correction, but success not
guaranteed

REMEMBER  THE TITLE HERE IS ALL CAPS!!!

BASIC PATTERNS
OF AGENT

INTERACTION

Summary: Basic patterns
of agent interaction
● Agent using another agent as a tool

○ Either tool-calling or forced validation pattern
● Agents as nodes in a DAG

○ Transforming input into output and sending it on
○ Often pass a state object down the line, eg

whole conversation history
● Agents communicating via a shared state

○ In existing repos, mostly a group chat
○ Could be a KV store, knowledge graph, …

● Nesting: using an event graph with one starting and
one final node as a node in another graph

