
REMEMBER ALL CAPS HERE!!!

GRAPHS,
GRAPHS

EVERYWHERE…
Many thanks to Tatiana Grechishcheva for help in preparing the Knowledge Graph slides

Graphs, graphs
everywhere…

Before diving into the options you have for building
multi-agent systems, letʼs have a quick refresher
on the different kinds of graphs involved

● Graphs for representing knowledge
○ Entity-centric
○ Document-centric
○ Hybrid

● Graphs for representing computation flow
○ State machines
○ Event-driven computation

Graphs representing
knowledge

● The first important kind of graph is that representing
raw knowledge weʼre trying to retrieve

● Here itʼs important to understand the difference
between the traditional entity-centric “knowledge
graphˮ linking entities via their relationships, and the
new varieties: document-centric and mixed

A classic knowledge graph:

Graph vertices (nodes) are entities, and the
edges connecting them are their
relationships.

Nodes have labels (entity types) to group
them together.

Relationships have a type and direction.

Both nodes and relationships can have
properties

Example of an entity-centric Knowledge Graph

Alice Bob

Service 1

built built

Service 2

maintains

Label: employee
Properties:

- Name
- Team
- Role

Cypher - language for querying KG

Multi-hop queries!

MATCH (alice: Person {name: “Aliceˮ}) - BUILT →(s)← BUILT - (coBuilder)
RETURN coBuilder.name, s.name

WHO WAS BUILDING SERVICES WITH ALICE?

Why the resurgence of
knowledge graphs?

● LLMs make it easy (if computationally
expensive) to auto-generate
entity-centric knowledge graphs, by
extracting entities and their
relationships

● Graphs are the natural next step
beyond embedding similarity for RAG
retrieval

Entity-centric vs document-centric graphs

Section 1

Section 2

Subsection 2.1

Subsection 2.2

Section 3

….

Section
1

Section
2

Section
3

Subsec
tion 2.1

Subsec
tion 2.2

next next

sub sub

cross-ref

Mixed graphs

● Thereʼs no reason why you should restrict
your graph to only one type of nodes and
edges

● Itʼs completely reasonable to have some of
the vertices be document chunks, and
others be concepts or keywords contained
in those chunks

● In fact, thatʼs how Datastaxʼs Astra DB
works!

https://medium.com/building-the-open-data-stack/a-guide-to-graph-rag-a-new-way-to-push-the-bou
ndaries-of-genai-apps-f616d47758a0

Graphs to define
computation logic

Another, quite distinct usage of directed graphs
is defining computation logic, in particular in
multi-agent systems. This has two important,
distinct varieties:
● State machine graph
● Event propagation graph

State machine graph

● Most important examples: Langgraph,
OpenAI Swarm

● Exactly one node at a time is active
● There is a single system “stateˮ that the

active node can access
● The active node inspects and modifies

the state and decides which of its
children nodes will become active next

Event-driven computation
graph

● Most important example in GenAI space: LllamaIndex
Workflows
○ Many examples in other contexts, eg Faust

● Each node in the graph emits one or multiple event
types

● Each node in the graph listens to one or multiple
event types

● Two nodes are considered connected if the second
node listens to an event the first one can emit

https://motleycrew.readthedocs.io/en/latest/examples/event_driven.html

Example:
A slide generation workflow

Source:https://towardsdatascience.com/how-i-streamline-my-research-and-presentation-
with-llamaindex-workflows-3d75a9a10564

Actually…

● A state machine can be looked at as a special case of an
event-driven computation graph, in which
○ Each edge is a distinct event type
○ Every node

■ Has to respond after receiving a single event
■ Emits exactly one event in response
■ Holds no state beyond that contained in the

event
● As state machines are such a common and neat

abstraction, it makes sense to single them out
● However, in the following discussion when I refer to

“event-driven computationˮ I implicitly include state
machines

