GRAPHS,
GRAPHS
EVERYWHERE...

Many thanks to Tatiana Grechishcheva for help in preparing the Knowledge Graph slides

Graphs, graphs
everywhere...

Before diving into the options you have for building
multi-agent systems, let's have a quick refresher
on the different kinds of graphs involved

e Graphs for representing knowledge
o Entity-centric
o Document-centric
o Hybrid
e Graphs for representing computation flow
o State machines
o Event-driven computation

Graphs representing
knowledge

e The first important kind of graph is that representing
raw knowledge we're trying to retrieve

e Here it's important to understand the difference
between the traditional entity-centric “knowledge
graph” linking entities via their relationships, and the
new varieties: document-centric and mixed

A classic knowledge graph:

Graph vertices (nodes) are entities, and the
edges connecting them are their
relationships.

Nodes have labels (entity types) to group
them together.

Relationships have a type and direction.

Both nodes and relationships can have
properties

Example of an entity-centric Knowledge Graph

Label Alice Bob
abel: employee
Properties:
Name
Team : :
Rolo maintains
built built

Service 2

Service 1

Cypher - language for querying KG

Multi-hop queries!

WHO WAS BUILDING SERVICES WITH ALICE?

MATCH (alice: Person {name: "Alice”"}) - [:BUILT] =>(s)< [:BUILT] - (coBuilder)

RETURN coBuilder.name, s.name

Why the resurgence of
knowledge graphs?

e LLMs make it easy (if computationally
expensive) to auto-generate
entity-centric knowledge graphs, by
extracting entities and their
relationships

e Graphs are the natural next step
beyond embedding similarity for RAG
retrieval

Entity-centric vs document-centric graphs

Section T:

)) Section Section Section
Section 2: 1 next 2 next 3

Subsection 2.1

‘ sub sub

Subsection 2.2

Section 3:
Subsec Subsec

tion 21 cross-ref tion 2.2

Mixed graphs

e There's no reason why you should restrict
your graph to only one type of nodes and
edges

e |t's completely reasonable to have some of
the vertices be document chunks, and
others be concepts or keywords contained
in those chunks

e In fact, that's how Datastax’'s Astra DB
works!

https://medium.com/building-the-open-data-stack/a-guide-to-graph-rag-a-new-way-to-push-the-bou
ndaries-of-genai-apps-f616d47758a0

Graphs to define
computation logic

Another, quite distinct usage of directed graphs
is defining computation logic, in particular in
multi-agent systems. This has two important,
distinct varieties:

e State machine graph

e Event propagation graph

State machine graph

e Most important examples: Langgraph,
OpenAl Swarm

e Exactly one node at a time is active

e There is a single system “state” that the
active node can access

e The active node inspects and modifies
the state and decides which of its
children nodes will become active next

Event-driven computation
graph

e Most important example in GenAl space: Lllamalndex

Workflows
o Many examples in other contexts, eg Faust

e Each node in the graph emits one or multiple event
types

e Each node in the graph listens to one or multiple
event types

e Two nodes are considered connected if the second
node listens to an event the first one can emit

https://motleycrew.readthedocs.io/en/latest/examples/event_driven.html

Example:

A slide generation workflow

Source:https://towardsdatascience.com/how-i-streamline-my-research-and-presentation-
with-llamaindex-workflows-3d75a9a10564

Actually...

e A state machine can be looked at as a special case of an
event-driven computation graph, in which
o Each edge is a distinct event type
o Every node
m Has to respond after receiving a single event
m Emits exactly one event in response
m Holds no state beyond that contained in the
event
e As state machines are such a common and neat
abstraction, it makes sense to single them out
e However, in the following discussion when | refer to
“event-driven computation” | implicitly include state
machines

