
   

 

   

 

  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

PRIVACY ENHANCING TECHNOLOGY (PET): 

PROPOSED GUIDE ON SYNTHETIC DATA 

GENERATION  
 

 

Published 15 July 2024 

 

Version Number 1.0 

 
 

 

 

JOINTLY DEVELOPED WITH 

 

 

SUPPORTED BY 

 

 

 



2 

 

 

 

  

TABLE OF CONTENTS  

 

I. Introduction to Privacy Enhancing Technology (PET) ................................................... 3 

II. Synthetic Data............................................................................................................................. 4 

What is Synthetic Data? ........................................................................................ 5 

Under What Circumstances is Synthetic Data Useful? ......................................... 6 

Case Studies ........................................................................................................... 8 

III. Recommendations ................................................................................................................ 10 

Annex A: Handbook on Key Considerations and Best Practices in 

Synthetic Data Generation ....................................................................................................... 11 

Annex B: Data Dictionary Format .......................................................................................... 24 

Annex C: Examples of Methods of Synthetic Data Generation .................................. 27 

Annex D: Re-identification Risks ............................................................................................ 33 

Annex E: Examples of Approaches in Evaluation of Re-identification 

Risks ................................................................................................................................................. 35 

ACKNOWLEDGEMENTS ............................................................................................................ 41 

 



3 

 

 

I. Introduction to Privacy Enhancing Technology 

(PET) 

Privacy Enhancing Technologies (PETs) are a suite of tools and techniques that allow 

the processing, analysis, and extraction of insights from data without revealing the 

underlying personal or commercially sensitive data. By incorporating PETs, companies 

can maintain a competitive edge in the market through leveraging their existing data 

assets for innovation while complying with data protection regulations, reducing the 

risk of data breaches and demonstrating a commitment to data protection. PETs are 

not just a defensive measure; they are a proactive step towards fostering a culture of 

data protection and securing a company's reputation in the digital age. 

PETs can generally be classified into three key categories1: data obfuscation, encrypted 

data processing, and federated analytics. PETs can also be combined to address varying 

needs of organisations. The following Table 1 maps out the current types of PETs in 

the market and their key applications. 

 

Table 1. Types of PETs and their applications 

Categories of 

PETs 

PETs Examples of applications 

(non-exhaustive) 

Data 

obfuscation 

Anonymisation/pseudonymisation 

techniques  

• Secure storage 

• Data sharing and 

retention  

• Software testing 

Synthetic data generation • Privacy-preserving AI 

machine learning 

• Data sharing and 

analysis  

• Software testing 

Differential privacy • Expanding research 

opportunities 

• Data sharing 

Zero knowledge proofs • Verifying information 

without 

requiring disclosure (e.g., 

age verification)  

Encrypted data 

processing 

Homomorphic encryption • Secure data stored in 

cloud 

 

1  Adapted from OECD, “Emerging Privacy Enhancing Technologies: Current Regulatory and Policy   

Approaches,” OECD Digital Economy Papers (OECD, 2023). 
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• Computing on private 

data that is not disclosed 

Multi-party computation 

(including private set intersection) 

• Computing on private 

data that is not disclosed 

Trusted execution environments • Computing using 

models that need to 

remain private 

• Computing on private 

data that is not disclosed 

Federated 

analytics 

Federated learning • Privacy-preserving AI 

machine learning Distributed analysis 

 

II. Synthetic Data 

This guide focuses on the use of synthetic data2 to generate structured data. While 

synthetic data is generally fictitious data that may not be considered personal data on 

its own, it is not inherently risk-free due to possible re-identification risks3. As such, 

this guide proposes good practices that organisations may adopt to generate synthetic 

data to minimise such risks for a set of common use case archetypes. The guide also 

includes a set of good practices and risk assessments/considerations for generating 

synthetic data as well as governance controls, contractual process, and technical 

measures to mitigate residual risks.  

The target audience for this guide are CIOs, CTOs, CDOs, data scientists, data 

protection practitioners, and technical decision-makers who may directly or indirectly 

be involved in the generation and use of synthetic data.  

Synthetic data is a technology that is being actively researched and developed at the 

time of publication. Hence, this guide is not intended to provide a comprehensive or 

in-depth review of the technology or its assessment methods. The guide is intended 

to be a living document, and will be updated to ensure its recommendations remain 

relevant. 

 

 

 

 

2 There are two types of synthetic data: fully synthetic data and partially synthetic data. This guide 

discusses the use of fully synthetic data.  
3 In this guide, we generally refer to privacy risks as re-identification risks. 
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What is Synthetic Data? 

Synthetic data is commonly referred to as artificial data that has been generated using 

a purpose-built mathematical model (including artificial intelligence (AI)/machine 

learning (ML) models) or algorithm. It can be derived by training a model (or algorithm) 

on a source dataset to mimic the characteristics and structure of the source data. Good 

quality synthetic data can retain the statistical properties and patterns of the source 

data to a high extent. As a result, performing analysis on synthetic data can produce 

results similar to those yielded with source data.  

 

Characteristics of synthetic data 

Figure 1 shows an example of how synthetic data may look like as compared with the 

source data. Generated synthetic data will generally have different data points from 

the source data, as seen from the tabular data. However, the synthetic data will have 

statistical properties that are close to that of the source data, i.e., capturing the 

distribution and structure of the source data as seen from the trend lines in Figure 1.  

 

 
Figure 1: Source data versus synthetic data.4 

 

As such, synthetic data may not always be inherently risk-free as information about an 

individual in the source dataset, or confidential data, can still be leaked due to the 

resemblance of the synthetic data to the source data. There will also be trade-offs5 

between data utility and data protection risks in synthetic data generation. However, 

such risks can be minimised by taking data protection into consideration during the 

synthetic data generation process.  

 

 

4 Diagram taken with modification from Khaled El Emam, Lucy Mosquera, and Richard Hoptroff, Practical 

Synthetic Data Generation (O’Reilly Media, Inc, 2020). 
5 Trade-off between data utility and data protection risks is further discussed in Annex A: Step 1 and Step 

3 in this guide. 
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Under What Circumstances is Synthetic Data Useful? 

Synthetic data can be used in a variety of use cases ranging from generating training 

datasets for AI models to data analysis and collaboration.  The use of synthetic data 

not only can accelerate research, innovation, collaboration, and decision-making but 

also mitigate concerns about cybersecurity incidents and data breaches, enabling 

better compliance with data protection/privacy regulations. Table 2 discusses a few 

common use case archetypes, their key benefits, and good practices that organisations 

can focus on when generating synthetic data. 

 

Table 2. Use case archetypes for synthetic data. 

Types of Use 

Cases 

Key Benefits Good Practices to 

Generate Synthetic Data  

Use case archetype 1: Generating training dataset for AI models 

Augmenting 

data for AI/ML 

models 

 

• Synthetic data addresses the 

challenge of the user having 

to obtain large volumes of 

labelled data needed for 

training and testing AI/ML 

models due to costs, legal 

regulations, and proprietary 

rights. 

• Augmenting training datasets 

with synthetically generated 

labelled data can be more 

cost-effective, especially 

when the source datasets are 

sparse.  

• Add noise* to or reduce 

granularity of the 

synthetic data points. 

• Such fictitious new data 

points will generally not 

be considered personal 

data.  

 

*If the statistical 

properties/characteristics of 

the synthetic data is 

representative of the 

population in question and 

not significantly skewed 

towards a specific 

individual/group of 

individuals used as source 

training data, adding of 

noise might not be 

necessary as re-

identification risks are 

generally low. 

Increasing 

data diversity 

for AI/ML 

models 

• Synthetic data can be used to 

simulate rare events or 

augment under-represented 

groups in training AI models.  

• Diverse datasets can be useful 

in improving performance of 

AI/ML models 

Use case archetype 2: Data analysis and collaboration 

Data sharing 

and analysis  

• Underlying trends or patterns, 

and biases of the data are 

useful for data analytics 

regardless of whether the data 

source is real or synthetic. 

• Balance the trade-offs 

between data utility and 

data protection by 

incorporating data 

protection measures 
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• Synthetic data can enable data 

sharing for analysis especially 

in industries and sectors, e.g., 

healthcare, where the source 

data can be sensitive. 

 

 

throughout the synthetic 

data generation process, 

for example: 

 

Data preparation  

• Remove outliers from 

source data 

• Pseudonymise source 

data  

• Employ data 

minimisation and 

generalise granular data  

 

Synthetic data generation 

• Add noise before or 

after synthetic data 

generation  

 

Post synthetic data 

generation 

• Incorporate technical, 

contractual, and 

governance measures to 

mitigate any residual re-

identification risks 

Previewing 

data for 

collaboration 

• Synthetic data can be used in 

data exploration, analysis, and 

collaboration to provide 

stakeholders with a 

representative preview of the 

source data without exposing 

sensitive information.  

• This enables stakeholders to 

explore and understand the 

structure, relationships, and 

potential insights within the 

data to gain assurance of the 

data quality before finalising 

any agreement or 

collaboration. 

 

Use case archetype 3: Software testing 

System 

development/ 

software 

testing 

• Organisations can use 

synthetic data instead of 

production data to facilitate 

software development.  
• Use of synthetic data can help 

organisations avoid data 

breaches in the event of the 

development environment 

being compromised. 

• Focus on generating 

synthetic data that 

follows semantics e.g., 

format, min/max values 

and categories, of 

source data instead of 

the statistical 

characteristics and 

properties. 

 

Refer to Annex A for proposed considerations and good practices to generate 

synthetic data. 
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Case Studies 

(A) Training AI model for fraud detection in the financial sector6 

 

Problem:  Since the number of fraudulent transactions in the source data is 

small compared to normal, non-fraudulent transactions, the source data did not 

train models very well for fraud detection.  

Solution:  J.P. Morgan successfully used synthetic data for fraud detection 

model training. AI models were provided with samples of normal and fraudulent 

transactions to understand the tell-tale signs of suspicious transactions.  

Benefit: Synthetic data proved to be more effective in terms of training models 

to detect anomalous behaviour. This is because the synthetic data used was 

designed to contain a higher percentage of fraudulent transactions.  

 

(B) Training AI model for research into AI bias7  

 

Problem: Multi-label classification and regression models are frequently 

utilised at Mastercard for various applications, including fraud prevention, anti-

money laundering and marketing use cases for portfolio optimisation. These 

models, while powerful, require careful attention to proxies of demographic 

attributes within their training data, which could learn unintended biases. 

Ensuring the accuracy and fairness of these models is complex due to their 

multi-label setting, the confidentiality of the demographic attributes, and the 

challenges in accessing the training dataset for model development. 

Solution: Mastercard partnered with researchers to develop new AI bias testing 

methods adapted to multi-label settings. To protect the privacy of the data 

shared externally, synthetic data was created to support model training and 

methodological research into fair multi-label models. 

Benefit: Synthetic data was measured to be sufficiently private to be shared 

with external researchers while capturing real relationships within the source 

data. Synthetic data enabled new insights that would not have been possible 

without the privacy protecting characteristics inherent to synthetic data. 

 

6 J. P. Morgan, “Synthetic Data for Real Insights,” Technology Blog, n.d., https://www.jpmorgan.com/ 

technology/technology-blog/synthetic-data-for-real-insights 
7 Contributed by Mastercard 
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(C) Safeguarding patient data for data analysis8   

 

Problem: Prior to utilising synthetic data, Johnson & Johnson (J&J) allowed 

external researchers or consortia to access healthcare data for research 

proposals validated by J&J. To safeguard patient privacy, the data was 

transformed into anonymised healthcare data. However, feedback received 

indicated that the overall usefulness of the anonymised data, which relied on 

traditional anonymisation techniques, was not always satisfactory and did not 

always meet the requirements of the researchers or consortia. 

 

Solution:  J&J has introduced high-quality AI generated synthetic data as an 

additional option to process their healthcare data.  

Benefit:  Researchers and clients have experienced significantly improved 

analysis. When employed properly, this form of synthetic data can effectively 

represent the target population and offer various analytical and scientific 

benefits. 

 

(D) Facilitating data collaboration9   

 

Problem:  A pharmaceutical company wanted to purchase heart-related health 

data from a research institute to test out a new hypothesis. The health data, 

which was collected by the research institute from consenting subjects, was 

hosted under a highly regulated environment as required of the healthcare 

sector. However, this presents significant challenges for many data engagement 

activities.  

Solution: A*STAR was engaged by the pharmaceutical company to build a 

pipeline to create synthetic copies of the actual data, which can then be brought 

outside of this regulated environment. 

Benefit:  This allowed the pharmaceutical company to preview the data and be 

assured of the data quality prior to the high-value purchase and access to the 

actual data. 

 

 

 

8 Contributed by Johnson & Johnson (J&J) 
9 Contributed by A*STAR 
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III. Recommendations 

Synthetic data has the potential to drive the growth of AI/ML by enabling AI model 

training while protecting the underlying personal data. It also addresses dataset 

related challenges for AI model training, such as insufficient and biased data, through 

enabling the augmentation and increased diversity of training datasets. 

 

In addition, synthetic data can be used to facilitate and support organisations’ data 

analytics, collaboration and software development needs.  An added benefit of using 

synthetic data in place of production data to facilitate software development is that 

data breaches can be avoided in the event the development environment is 

compromised.  

   

PDPC recommends a set of good practices and risk assessments/considerations for 

generating synthetic data and to reduce any residual risks from re-identification 

through governance controls, contractual process, and technical measures (refer to 

Annex A). 
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Annex A: Handbook on Key Considerations and 

Best Practices in Synthetic Data Generation 

In this handbook, we describe the key considerations and best practices for 

organisations to reduce re-identification risks of synthetic tabular data through a five-

step approach.  

 

For any other complex synthetic datasets that are unstructured, organisations are 

advised to consider hiring synthetic data experts, data scientists or independent risk 

assessors to assess and mitigate the risks of the generated synthetic data.  

 

Overview of five-step approach to generate synthetic data 

 

 

Step 1: Know your data 

Before embarking on any synthetic data project, it is necessary to have a clear 

understanding of the purpose and use cases of the synthetic data and the source data 

that the synthetic data is to mimic. This will help to determine whether use of synthetic 

data might be relevant and identify the possible risks of using the synthetic data. Some 

of the considerations may include: 

• Where general trends/insights of source data are sensitive, organisation should 

take note that the use of synthetic data will not offer any protection to the 

trends/insights since they will be replicated in the synthetic data. 

• Where the synthetic data is intended to be released publicly, organisations may 

have to prioritise data protection over data utility in such circumstances.  
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• Where relevant, organisations should also put in place proper contractual 

obligations on recipients of synthetic data where necessary to prevent re-

identification attacks on the data. 

 

With this knowledge, the management and data owner, with the help of relevant 

stakeholders such as the data analytics team, should establish objectives prior to 

synthetic data generation to determine an acceptable risk threshold10 of the generated 

synthetic data and the expected utility of the data. This will help provide organisations 

with the appropriate benchmarks to assess any trade-offs between data protection 

risks and data utility. 

These benchmarks may be adjusted appropriately to meet the business objectives, 

taking into consideration any trade-offs between data utility and data protection risks 

after the synthetic data generation process, as well as safeguards and controls to 

mitigate or lower any residual risks posed by the generated synthetic data. The 

acceptance criteria should be incorporated into the organisation's risk assessments 

(e.g., enterprise risk management framework 11 if applicable) or a Data Protection 

Impact Assessment (“DPIA”)12. 

 

Step 2: Prepare your data 

When preparing the source data13 for generating synthetic data, it is important to 

consider the following: 

 

• What are the key insights that needed to be preserved in the synthetic data? 

• Which are the necessary data attributes for the synthetic data to meet the 

business objectives? 

 

 

 

10 The re-identification risk threshold represents the level of re-identification risk that is acceptable for 

a given synthetic dataset. There is currently no universally accepted numerical value for risk threshold. 

For further details refer to Step 4 (Assess re-identification risks).  
11  Organisations may refer to ISO27001 for more information on developing an enterprise risk 

management framework. 
12 An example of this is PDPC’s Guide to Data Protection Impact Assessments. A DPIA is applicable in the 

case where personal data is involved. The DPIA may not be relevant in situations where the synthetic 

data generation does not involve personal data processing. 
13 This step assumes that the source data has been properly cleaned (such as fixing or removing 

incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data) and is of acceptable quality 

for the generation of synthetic data. 
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Understanding key insights to be preserved 

 

To ensure that the synthetic data can meet the business objectives, organisations need 

to understand and identify the trends, key statistical properties, and attribute-

relationships in the source data that need to be preserved for analysis e.g., identify 

relationships between demographic characteristics of population and their health 

conditions. 

 

Organisations should consider, at this point, whether outlier trends and insights are 

necessary to be preserved for the business objectives. Key considerations could include 

the following: 

 

• If outliers are not necessary to meet the business objectives and the risk of re-

identification is high, organisations should consider removing the outliers. This 

can be done prior to synthetic data generation or at subsequent stages of the 

synthetic data generation. 

 

• If the objective is to mimic the characteristics of the source data as closely as 

possible, including outliers, then the organisation may have to preserve the 

outlier trend/insight to meet the business objectives. In such instance, the 

organisation should note that the re-identification risks of individuals in the 

outlier data may be high and hence put in place risk mitigation measures. 

 

• If the business objective is to balance the number of data points in different 

data categories, then the synthetic data generation process itself can help 

mitigate the issue of outliers simply by generating more outliers. For example, 

in a dataset, the number of outlier data points comprising male individuals may 

be balanced with outlier data points comprising female individuals. 

 

Selecting data attributes 

 

Based on the key insights needed, organisations should apply data minimisation to 

extract only the relevant data attributes from the source data. Thereafter, remove or 

pseudonymise all direct identifiers14 from the extracted data.  

 

Where granular information is not necessary, organisations may generalise or further 

add noise to the data at this point or at a later step to reduce the risk of re-

identification. For example, organisations can generalise exact height and weight 

 

14 Refer to PDPC’s Guide to Basic Anonymisation on how to identify direct identifiers in a dataset. 
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information into height and weight bands to reduce the possibility of height and 

weight combinations being used to identify any outliers. 

 

Organisations should also standardise and document the details on each data attribute 

(such as data definitions, standards, metrics etc.) in a data dictionary. This enables the 

organisation to subsequently validate the integrity of the generated synthetic data to 

detect anomalies and fix any data inconsistencies. Refer to the following checklist in 

Table 3 for key considerations. 

  

Table 3: Checklist for data preparation 

Data Preparation Checklist 

Understand key insights 

i. Identify trends and entity relationships to be preserved for synthetic data generation. 

ii. Remove outliers if such trends/insights are not necessary. This can be performed post 

generation. 

Select data attributes 

iii. Apply data minimisation to select only data attributes that are necessary to meet 

business needs. 

iv. Remove or pseudonymise direct identifiers (e.g., name, national identification 

numbers). 

v. Generalise granular data or add noise (e.g., using differential privacy15) to the 

data/model if such detailed information is not necessary. This can also be performed 

post generation.  

vi. Standardise and document format, constraints, and categories of source data in data 

dictionary (refer to Annex B for a reference template): 

Format 

• Standardise strings to lower or proper case 

• Data types, column names, structures, relationships 

• Frequency of data record  

Constraints 

• Constraints of values for each data type, e.g., min-max values, non-negative 

values, non-null values 

Category 

• Types of data categories 

• Expected or valid values for data attributes within each data category. Example 

of a data category is “country”. 

 

 

15 The use of differential privacy to add noise to synthetic data is widely discussed as a mechanism to 

reduce re-identification risks. However, there is currently no universal standard on how to implement 

differential privacy. Moreover, the noise added may also reduce the utility of the synthetic data, making 

it less accurate or useful for certain types of analysis. 
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Step 3: Generate synthetic data 

There are many different methods 16  to generate synthetic data, for example, 

sequential tree-based synthesisers, copulas, and deep generative models (DGMs). 

Organisations need to consider which methods are most appropriate, based on their 

use cases, data objectives, and types of data. Please refer to Annex C for more 

information on these synthetic data generation methods. Thereafter, organisations 

may consider splitting the source data into two separate sets e.g., 80% as training 

dataset, and 20% as control dataset 17  for assessing re-identification risks of the 

synthetic data.  

After generating synthetic data, it is a good practice for organisations to perform the 

following checks on the quality of the generated synthetic data: 

• Data integrity 

• Data fidelity  

• Data utility 

 

Data integrity 

Data integrity ensures the accuracy, completeness, consistency, and validity of the 

synthetic data as compared with the source data. Organisations can validate the 

integrity of the generated synthetic data against the dictionary of the source data. 

 

Data fidelity 

Data fidelity examines if synthetic data closely follows the characteristics and statistical 

attributes of the source data. There are a few metrics for measuring data fidelity and 

they are typically done by statistically comparing the generated synthetic data directly 

with the source data. Organisations should use the performance metric(s) for data 

fidelity18 (see Table 4) that best meet their data objectives.  

 

 

16 This guide may not be comprehensive in covering all other synthetic data generation methods such 

as Bayesian model and variational autoencoders (VAE). 
17 Refer to Approach 2 in Annex E for more details on the assessment and evaluation framework for 

quantifying re-identification risk.  
18 There are other generic metrics described here in addition to those listed in Table 4. See Khaled El 

Emam et al., “Utility Metrics for Evaluating Synthetic Health Data Generation Methods: Validation Study,” 

JMIR Medical Informatics 10, no. 4 (2022)  
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Table 4: Performance metrics for data fidelity 

Performance metrics generally used for assessing data fidelity 

Histogram-based 

similarity 

Measures the similarity between source and synthetic 

data’s distributions through a histogram comparison 

of each feature. This ensures the synthetic data 

preserves important statistical properties such as 

central tendency (mean, median), dispersion 

(variance, range), and distribution shape (skewness, 

kurtosis). 

Correlational similarity Measures the preservation of relationships between 

features in the source and synthetic datasets. For 

example, if higher education typically leads to higher 

income in the source data, this pattern should also be 

evident in synthetic data. 

 

Data utility 

Data utility refers to how well synthetic data can replace or add to source data for the 

specific data objective of the organisation.  

There are different approaches to evaluate the utility of synthetic data. The true test of 

utility is how it performs in real-world tasks. One common approach to check this is by 

training identical AI/ML models on synthetic and training data. The performances from 

the two models are compared with the control dataset, simulating testing in the 

production environment, to assess the utility of the synthetic data. Examples of 

performance metrics generally used include “accuracy”, “precision”, “recall”, “F1-Score”, 

or “Area Under the ROC Curve (AUC-ROC)” for classification tasks, and “Mean Absolute 

Error (MAE)” or “Mean Squared Error (MSE)” for regression tasks19 (see definition in 

Table 5 below). If their compared scores are close, then it indicates that the synthetic 

data has high utility. In simple terms, a high utility score means that machines trained 

on synthetic data work similarly to those trained on training data.  

 

When trying to maximise the utility of data, there is often an inherent trade-off 

between data utility and data protection. Thus, a fine balance between data utility and 

 

19 There is another performance metric suitable for regression tasks, i.e., replicability, which is used for 

assessing data utility and is described here in addition to those listed in Table 5. See Khaled El Emam et 

al., “An Evaluation of the Replicability of Analyses Using Synthetic Health Data,” Scientific Reports 14 

(2024), https://www.nature.com/articles/s41598-024-57207-7 
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data protection needs to be achieved through an iterative process (Steps 3 and 4) to 

synthesise data up to an acceptable level for re-identification risks while finding the 

right balance of data utility.  

 

Table 5: Performance metrics for data utility 

Performance metrics generally used for assessing data utility 

Accuracy Measures the overall correctness of the model. It is calculated as the 

ratio of correct predictions (true positives and true negatives) to the total 

observations.  

E.g., if out of the health data of 100 individuals, the model predicts 90 of 

these individuals' health status correctly, the accuracy is 90%.  

Precision Measures the model's ability to identify only relevant instances. It is 

calculated as the ratio of correct positive predictions (true positives) to 

all positive predictions (true positives and false positives).  

E.g., If out of 100 individuals that are predicted as diseased by the model, 

80 of these individuals are correctly identified as diseased, the precision is 

80%. 

Recall Measures the model's ability to find all relevant cases. It is calculated as 

the ratio of correct positive predictions (true positives) to all actual 

positives (true positives and false negatives).  

E.g., If out of 100 diseased individuals, the model predicts 90 of these 

individuals as diseased, the recall is 90%. 

F1-score Balances precision and recall in a single metric. (mathematically, it is the 

harmonic mean20 of precision and recall). 

Area Under 

the ROC 

Curve  

(AUC-ROC) 

Measures the model's ability to distinguish between classes. It is 

represented by the area under the Receiver Operating Characteristic 

(AUC-ROC) curve, comparing the true positive rate to the false positive 

rate at various classification thresholds.  

E.g., If the AUC-ROC score is 0.9, it means there is a 90% chance that the 

model will correctly distinguish between a randomly chosen positive 

instance and a randomly chosen negative instance. 

Mean 

Absolute 

Error (MAE) 

Measures the model's errors in predictions by averaging the absolute 

differences between predicted and actual values, providing a direct 

measure of average error magnitude without considering error 

direction. It is calculated as the mean of the absolute differences 

between actual and predicted values. 

 

20 A type of average that gives more weight to lower values of precision and recall scores. 
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Mean 

Squared Error 

(MSE) 

Measures the model's errors in prediction by averaging the squares of 

the errors between predicted and actual values. MSE heavily penalises 

larger errors more than smaller ones, due to squaring the error values. 

This makes it more sensitive to outliers and large errors. It is calculated 

as the mean of the squared differences between actual and predicted 

values. 

 

Use the following checklist in Table 6 as a reference guide where applicable.  

Table 6: Checklist for checking the generated synthetic data  

Post-generation Checklist  

i. Remove outliers if such trends/insights are not necessary to meet business needs. 

ii. Generalise granular data or add noise to the data/model if such detailed 

information is not necessary.  

iii. Perform data integrity checks on synthetic data by validating data format, 

structures etc with the earlier documented data dictionary. 

iv. Select relevant metrics that meet data objectives to measure data fidelity. 

v. Select relevant performance metrics that meets data objectives to measure data 

utility. 

 

Step 4: Assess re-identification risks 

After the synthetic data is generated and utility measurement is assessed to be 

acceptable, organisations should assess and perform the re-identification risk 

assessment based on their internal acceptance criteria. Annex D discusses the widely 

known re-identification risks for synthetic data. As synthetic data generally does not 

replicate its training data points, re-identification risk cannot be deduced directly from 

scrutinising whether the generated synthetic data contains any personal data. 

Generally, re-identification (or privacy) risk assessment for synthetic data is an attack-

based evaluation. It evaluates how successful an adversary, who carries out re-

dentification attacks through singling out attacks, linkability attacks and inference 

attacks (as described in Annex D) on synthetic datasets, can determine if an individual 

belongs to the source dataset (i.e., membership inference) and/or derive details of an 

individual from the source dataset which are otherwise undisclosed (i.e., attribute 

inference). The goal for organisations is to ensure that the re-identification risk levels 

for the three key re-identification attacks are acceptable. If re-identification risk level 

is unacceptable, repeat Step 3 to re-generate synthetic data to meet the acceptable 
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risk level. This can be achieved by applying more data protection controls on the 

source data, e.g., generalising the data or adding noise (see “Checklist for data 

preparation” in Table 3). 

Various approaches have been proposed to determine and quantify re-identification 

risks. Refer to Annex E for examples of such approaches. Organisations may need to 

engage the synthetic data solution provider to perform the re-identification risk 

assessments.  

While there is no universally accepted numerical threshold value for risk level, some 

organisations 21 have chosen to align their re-identification risk level with existing 

industry guidelines and recommendations for de-identified/anonymised data (see 

Table 7). However, organisations should take note that the computation method for 

re-identification threshold in a de-identified/anonymised dataset is very different from 

that for a synthetic dataset. Nevertheless, the fundamental basis for both is that the 

re-identification/privacy risk assessment is a probabilistic measurement.  

The re-identification risk threshold values in Table 7 summarises the precedent 

acceptable risk threshold used by some organisations for assessing de-

identified/anonymised data. 

 

Table 7. Existing risk threshold guidelines for de-identification/anonymisation 

Risk threshold for de-identification/anonymisation 

European Medicines 

Agency (EMA) 

The European Medicines Agency (EMA) established a 

policy on the publication of clinical data for medicinal 

products. The guidelines accompanying the policy 

recommend a maximum risk threshold of 0.09.22 

Health Canada Health Canada implemented the same threshold as 

EMA, 0.09, for the sharing of clinical data.23 

 

 

21 Samer El Kababji et al., “Evaluating the Utility and Privacy of Synthetic Breast Cancer Clinical Trial Data 

Sets,” JCO Clinical Cancer Informatics 7 (2023), https://ascopubs.org/doi/full/10.1200/CCI.23.00116 
22 European Medicines Agency, “European Medicines Agency Policy on Publication of Clinical Data for 

Medicinal Products for Human Use,” 2019, https://www.ema.europa.eu/en/documents/other/policy-70-

european-medicines-agency-policy-publication-clinical-data-medicinal-products-human-use_en.pdf 
23 Health Canada, “Guidance Document on Public Release of Clinical Information: Profile Page,” 2019, 

https://www.canada.ca/en/health-canada/services/drug-health-product-review-approval/profile-

public-release-clinical-information-guidance.html 
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ISO/IEC 27559 

Privacy enhancing data de-

identification framework. 

ISO/IEC 27559 summarises a list of example thresholds 

providing a range of acceptable values which 

encompasses 0.09.  

 

Step 5: Manage residual risks 

In this final step, organisations should identify all potential residual risks and 

implement appropriate mitigation controls (technical, governance, and contractual) to 

minimise the identified risks. These risks and controls should be documented and 

approved by the management and key stakeholders as part of the organisation’s 

enterprise risk framework. 

Organisations can take into consideration the following risks as part of risk assessment. 

New insights derived from synthetic data 

New insights may be learnt about the source data by analysing the synthetic dataset 

alone or in combination with other available datasets. Organisations should assess if 

these insights may be sensitive or could misinform.   

Potential impact on groups of individuals due to membership disclosure   

Membership disclosure is when an adversary, using the information in synthetic data, 

determines that a target group of individuals was included in the source dataset. 

Potential disclosures or inference of attributes from the synthetic dataset related to 

groups of individuals may be regarded as confidential in nature e.g., there may be 

social stigma impact on individuals in a counselling group if their membership were to 

be disclosed.  

In determining the source dataset for synthetic data, it is important to also consider 

the sampling fraction from the population dataset, which is the ratio of the sample size 

within the source data as compared to the population size. For example, an adversary 

will have a lower chance of predicting whether a target group of individuals from a 

population is included in a synthetic dataset that is trained from a source dataset 

sampled from 20% of the population, as compared with a source dataset sampled from 

90% of the population. 
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Parties receiving synthetic data   

The receiving parties of the synthetic data, including any data intermediaries, may pose 

data breach compliance risks when handling synthetic data. Organisations should 

assess the data recipient’s ability and motivation to re-identify individuals from the 

dataset. A data recipient who possesses specialised skillsets or technologies may be 

able to combine special knowledge or get public knowledge to re-identify any 

individual from the dataset. Such risks must be accounted for in the risk assessment 

exercise. 

Changing environment 

The likelihood of re-identification risks of any given synthetic dataset increases over 

time, due to increase in computing power and improvement in data-linking techniques.  

Model leakage  

A model that has been trained using source data to generate the synthetic data can 

be susceptible to a malicious attack by adversary to reconstruct (parts of) the source 

data.   

 

Safeguards and best practices 

The following Table 8 lists examples of best practices that organisations can consider 

implementing to manage residual risks posed by using synthetic data. 

 

Table 8. Best practices and security controls to implement and manage risks 

Governance  

 

Access controls Implement access control for the source 

data and synthetic data generator model. 

Apply access control to synthetic data where 

the re-identification or residual risk is high, 

especially if the data contains highly 

sensitive information or insights. 

Asset management Properly label synthetic data to prevent 

human error when managing both source 

data and synthetic data. 

Risk management Periodically conduct re-identification risk 

reviews of synthetic datasets, especially if 

these are publicly released. 

Legal controls Have in place contractual agreements to 

outline the responsibilities of third-party 
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recipients of the synthetic data and/or 

models as well as any third-party solution 

providers who provide the synthetic data 

generation tools. This includes safeguarding 

the data/model and prohibiting attempts to 

re-identify individuals.  

 

In situations where the organisation may 

need to depend on the synthetic data 

solution provider to perform the risk 

assessment and mitigations, the solution 

provider may be required to provide 

assurance that appropriate controls have 

been implemented. 

ICT Controls  Database security  Segregate storage for synthetic data and 

source data.   

IT Operations  Logging and 

monitoring 

Properly log and monitor usage of source 

and synthetic data, as well as access to the 

synthetic data generator model. 

Risk 

Management 

Housekeeping of 

information 

Securely delete source data, synthetic data, 

and synthetic data generator model when 

they are no longer needed or have reached 

the end of retention period. 

 

Incident management 

Organisations should identify the risks of data breaches involving synthetic data, 

synthetic data generator model, and model parameters, and incorporate relevant 

scenarios into their incident management plans. The following considerations may be 

relevant for organisations’ internal investigations24: 

 

Loss of fully synthetic data (for synthetic data that is not intended for public 

release) 

 

Fully synthetic data that has data protection best practices incorporated in its 

generation process and has been assessed to have a low re-identification risk is 

generally not considered personal data. However, organisations should still proceed 

to investigate the incident to understand the root cause and improve its internal 

 

24 For data breach reporting to PDPC, organisations will have to assess if it is a notifiable breach based 

on PDPA’s Data Breach Notification obligation. 
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safeguards against such occurrences in the future. Organisations should also monitor 

if there is any evidence of actual re-identification and assess if it would be a notifiable 

data breach to PDPC. 

 

Loss of synthetic data generator model, parameters and/or synthetic data 

 

Both the synthetic data generator model and its parameters can provide useful 

information to an adversary to perform a model inversion attack. With access to 

generated synthetic data, it may further enhance the adversary’ ability to recover the 

source data. Organisations should proceed to investigate the incident to understand 

the root cause so as to improve its internal safeguards. It should also monitor for a 

possible successful model inversion attack which may result in the reconstruction and 

disclosure of the source data. Where such reconstruction and disclosure of source data 

is detected, organisations will have to assess if such breach would be notifiable. 
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Annex B: Data Dictionary Format 

The following is a sample of data dictionary format: 

COLUMN DESCRIPTION POSSIBLE VALUES REMARKS 

NAME Name of the 

column 

Gender, date of birth   

DESCRIPTION Short 

description of 

the variable. 

    

TYPE General data 

type.  

 

Specifically, 

how it 

appears 

superficially. 

Numeric, string, date Data can often appear in 

multiple formats. For 

example, categorical data 

can often be saved as ordinal 

integers, Boolean (which 

appears numerical), or as 

text, e.g., ‘YES’ or ‘NO’, or 

simply as a unique sequence 

of numbers, e.g., ‘3828’ and 

‘4271’ (which looks numeric 

but is actually a string). 

Another example is when 

dates are saved as strings, or 

as date-formats using excel, 

or its numerical equivalent. 

These two columns help data 

users navigate this confusion 

and facilitate development of 

automated scripts. 

 

TYPE indicates how the data 

appears superficially, 

whether it should be 

processed as a number, 

string, or date when loading 

or saving the data. 

SPECIFIC DATA TYPE 

indicates how the data 

should be processed in the 

ideal situation during 

analyses, for example. a 

datatype such as education 

level should ideally be 

ordinal, though it can be 

treated as categorical, 

ordinal, or interval. 

 

SPECIFIC DATA 

TYPE 

The ideal way 

of processing 

the variable. 

Example 1: If numeric, specify 

as ‘float’, ‘int’, ‘boolean’, 

‘ordinal’, ‘categorical’, ‘date’ 

etc. 

 

Example 2: If string, specify 

as ‘categorical’, ‘ordinal’, ‘free 

text’ etc. 

 

Example 3: If date, specify as 

‘date’ 
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CODINGS   Example 1: If TYPE is ‘date’, 

use excel convention to 

indicate date format, e.g., 

dd/mm/yyyy, mm-dd-yyyy, 

etc. 

 

Example 2: If SPECIFIC DATA 

TYPE is ‘boolean’, ‘ordinal’, 

‘categorical’, specify 

exhaustively all possible 

entries, delimited by ‘; ’, e.g., 

YES; NO; N.A. OR Male; 

Female, OR 1; 2; 3; 4; 5 

 

Example 3: If TYPE is 

‘numeric’, specify range. E.g., 

[0,100] OR (3,4). 

Take special notice of 

capital/small letters to avoid 

confusion. 

 

 

 

 

 

 

FREQUENCY For 

longitudinal 

data. Use to 

indicate if the 

variable is 

collected 

during a 

particular visit 

type. 

Example 1: BASELINE; 6 

WEEK; 6 MONTH 

 

Example 2: VISIT 1; VISIT 2 

Leave blank if not 

longitudinal data. 

CATEGORY Use to group 

the variable 

under a 

specific 

category. 

Example. 1: DEMOGRAPHICS 

 

Example 2: ECHO 

 

Example 3: LIFESTYLE 

VARIABLE 

  

  

SECONDARY Whether the 

variable can 

be derived 

from other 

variables 

present in the 

dataset.  

Example 1: If yes, ‘Y’ 

 

Example 2: If no, ‘N’, or leave 

blank. 

For instance, BMI is a 

secondary variable if it is 

computed from ‘height’ and 

‘weight’, and the two 

variables are also included in 

the dataset. Other examples 

are ‘age_decade’, where 

subjects of ages between 30 

to 40 are grouped together 

as ’30-40’ to reduce 

granularity of the variable, or 

‘dementia’, a diagnosis 

derived from answers to 

questions also present in the 

dataset. 
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If yes, explain how the 

variable was computed from 

other variables such as bmi 

formula ir diagnosis 

standard/criteria etc, either 

in the CONSTRAINTS or 

REMARKS column. 

CONSTRAINTS How the 

variable is 

dependent 

on other 

variables. 

Example 1: ‘Head_circ’ (head 

circumference) is a variable 

collected for ‘age’ <= 6. 

Leave empty if ‘age’ > 6. 

 

Example. 2: Collected only 

for data cohort ‘<COHORT 

NAME>’ or hospital 

‘<HOSPITAL A>’. 

 

Example 3: ‘Ever_pregnant’ 

only collected for females 

above age of 12. If ‘male’ or 

‘female’ below age of 12, 

recorded as ‘N.A.’ If ‘female’ 

above age of 12, either ‘YES’, 

‘NO’, or ‘UNKNOWN’. 

Example 4: ‘BMI’ only 

computable if ‘height’ and 

‘weight’ are also collected. 

Leave blank if either value is 

blank. 

This information will help 

data users decide if a value is 

missing/unknown (should be 

collected but not collected), 

or not applicable (not 

collected because of 

procedure). 

 

Note that the value of a 

variable might be dependent 

(or conditional) on other 

variables, but it is not 

necessarily derived from 

other variables; 

CONSTRAINTS and 

SECONDARY are 

complementary, but the 

former does not imply the 

latter. 

REMARKS Additional 

comments, 

such as how 

the data is 

encoded, 

and/or 

concerns 

related to the 

variable. 

Example. 1: How categorical 

variables are encoded as 

integers: 1=NO, 0=YES, -

1=N.A. 

 

Example 2: Sensitive OR self-

reported variable, etc. 

 

Example 3: Metric unit used 

for collection, ‘cm’, ‘m’, 

‘inches’, etc. 

It is often necessary to leave 

a note to remind data 

owners/users of the 

difficulties encountered 

during data collection, the 

corresponding response, and 

associated concerns. Some 

of these remarks can be 

included in the variable 

description, or here, if they 

are deemed miscellaneous. 
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Annex C: Examples of Methods of 

Synthetic Data Generation  

Statistical Methods 

 
(A) Bayesian Networks  

Contributed by Betterdata.ai 

Bayesian networks (BN) are probabilistic models that use a directed acyclic 

graph (DAG) to depict conditional dependencies between variables, enabling 

the generation of synthetic data statistically similar to the original data. BNs are 

helpful in sectors like healthcare and finance where accurate data relationships 

are essential. Typically, BNs require significant domain expertise for precise 

modelling via an expert-driven approach 25 . Alternatively, they can also be 

structured through data-driven methods, although these compromise accuracy 

due to less reliable inferences about the underlying data relationships. 

PrivBayes26 is an example of a BN that addresses moderate-dimensional data 

while preserving privacy. It constructs a Bayesian network to model 

relationships among data attributes and approximates the data distribution 

using low-dimensional marginals. By injecting noise into these marginals to 

ensure privacy, PrivBayes generates a synthetic dataset that closely mirrors the 

original while striking an efficient balance between data utility and privacy. 

However, the scalability27 of BNs is limited as their computational complexity 

can range from polynomial to exponential depending on the number of 

features and learning algorithms used. Polynomial complexity is achievable with 

expert-defined structures or by implementing accuracy constraints, such as a 

limited number of parents per node. Without these constraints, learning 

becomes an NP-hard problem, causing the complexity to exponentially increase 

with the number of features. While approximation algorithms can help manage 

 

25 Anthony Costa Constantinou, Norman Fenton, and Martin Neil, “Integrating Expert Knowledge with 

Data in Bayesian Networks: Preserving Data-Driven Expectations When the Expert Variables Remain 

Unobserved,” Expert Systems with Applications 56 (2016): 197–208, 

https://www.sciencedirect.com/journal/expert-systems-with-applications/vol/56/suppl/C 
26 Ergute Bao et al., “Synthetic Data Generation with Differential Privacy via Bayesian Networks,” Journal 

of Privacy and Confidentiality 11, no. 3 (2021), https://dr.ntu.edu.sg/handle/10356/164213 
27 Ole J. Mengshoel, “Understanding the Scalability of Bayesian Network Inference Using Clique Tree 

Growth Curves,” Artificial Intelligence 174, no. 12–13 (2010): 987–1006, 

https://ntrs.nasa.gov/api/citations/20090033938/downloads/20090033938.pdf 
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computational demands, they may reduce accuracy. Therefore, BNs are 

favoured for scenarios that require interpretability but less for high-dimensional 

datasets where deep learning offers a more practical solution due to its ability 

to efficiently handle large-scale data. 

  

(B)  Conditional-Copulas 

Contributed by the Agency for Science, Technology and Research (A*STAR)  

Conditional-Copulas are best suited for synthetic data generation when the 

training datasets are moderately sized, often generating time-efficient and 

robust replication of the required data joint distributions. As compared to 

relatively costly machine-learning methods, which as a data-driven process is 

much reliant on the cardinality and size of the available training data, copulas 

provide a cost-effective alternative that balances data availability with prior 

expert knowledge, generating diverse sample sets based on pre-determined 

conditions for methodology testing and algorithm training. 

The elliptical-copula-centric framework for synthetic data generation is a simple 

two-step process. In the first step, one estimates the marginal distributions of 

the input variables, followed by their pairwise-correlation parameters, then 

combining both to reproduce a statistical estimate of the joint distribution of 

the training dataset. The second step is relatively straightforward; one simply 

samples from the learned joint distribution to produce any number of synthetic 

sample points one requires, quite assured of its statistical properties with 

reference to what has been learned. The conditional-copula framework further 

enhances the former by fine-tuning the learning process; using the learned joint 

distribution as a baseline, one splits the training dataset into meaningful subsets 

based on identified conditions such as age groups, gender, races, etc., via 

reiteration of the learning process, one essentially resamples the generated 

datapoints with renewed conditional distributions (and conditions). This 

additional enhancement improves the flexibility of the copula-centric method 

and adapts it to complex training datasets with multi-modal distributions or 

even non-monotonic, non-linear relationships. 

Detailed implementation and performance of this method is available at 

https://github.com/BiomedDAR/copula-tabular. 
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(C)  Marginal-Based Data Synthesis 

Contributed by Prof Xiao Xiaokui, School of Computing, National 

University of Singapore 

Marginal-based data synthesis is a widely used approach for synthesising 

tabular data. This approach involves selecting a set of marginals from an input 

table T, each being a project of T onto a subset of its attributes. For instance, 

consider the following table T with 4 attributes: Age, Gender, Education, 

Occupation, and Income. 

Age Gender Education Occupation Income 

… … … … … 

Table T 

Here are a few examples of possible marginals of T: 

Age Gender Education 

… … … 

Marginal of T on {Age, Gender, Education} 

Age Occupation Income 

… … … 

Marginal of T on {Age, Occupation, Education} 

Gender Occupation 

… … 

Marginal of T on {Gender, Occupation} 

After choosing a set of marginals, the approach constructs a statistical model 

(e.g., a Bayesian network28) to capture the correlations among the attributes 

within the marginals. This model is then used to generate synthetic data that 

preserves attribute correlations. 

Marginal-based data synthesis has three advantages: 

• Simplicity: the concept is simple and easy to grasp. 

• Effectiveness: when the chosen marginals cover all important attribute 

correlations, the synthetic data could preserve the statistical properties 

of the original data. 

 

28 “Bayesian Network,” Wikipedia, 2024, https://en.wikipedia.org/wiki/Bayesian_network 
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• Privacy: the data synthesis process could offer strong privacy protection, 

if noise is carefully introduced during the selection and construction of 

marginals and the training of the statistical model. 

Marginal-base data synthesis has gained widespread adoption in practical 

applications. Representative methods include PrivBayes29, MST30, and PrivMRF31. 

In particular, PrivBayes and MST were among the winners of the 2018 NIST 

Differential Privacy Synthetic Data Challenge32 , while PrivMRF won the first 

place in the 2020 edition of the challenge33. In addition, PrivBayes has been 

implemented in SAP’s Data Intelligence Cloud34 as well as numerous open-

source data synthesis tools35. 

 

(D) Sequential Tree-based Synthesisers (SEQ) 

Contributed by Dr Khaled El Emam, University of Ottawa 

One way to generate synthetic data is to apply decision tree sequentially built 

on commonly used regression and classification trees (“CART”) algorithms, 

although variants (e.g., boosted trees) of these can also be used. The principle 

 

29 Jun Zhang et al., “PrivBayes: Private Data Release via Bayesian Networks,” in Proceedings of the 2014 

ACM SIGMOD International Conference on Management of Data, 2014, 1423–34, 

https://dl.acm.org/doi/10.1145/2588555.2588573 
30 Ryan McKenna, Gerome Miklau, and Daniel Sheldon, “Winning the NIST Contest: A Scalable and 

General Approach to Differentially Private Synthetic Data,” Journal of Privacy and Confidentiality 11, no. 

3 (2021), https://journalprivacyconfidentiality.org/index.php/jpc/article/view/778 
31  Kuntai Cai et al., “Data Synthesis via Differentially Private Markov Random Fields,” Github, n.d., 

https://github.com/caicre/PrivMRF 
32 National Institute of Standards and Technology, “Disassociability Tools,” NIST, 2023, https:// 

www.nist.gov/itl/applied-cybersecurity/privacy-engineering/collaboration-space/focus-areas/de-id/ 

tools#dpchallenge 
33 National Institute of Standards and Technology, “2020 Differential Privacy Temporal Map Challenge,” 

NIST, 2022, https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/ 

2020-differential-privacy-temporal 
34  SAP Community, “SAP Data Intelligence: Data Synthesizer for Machine Learning Operator,” 

Technology Blogs by SAP, 2021, https://community.sap.com/t5/technology-blogs-by-sap/sap-data-

intelligence-data-synthesizer-for-machine-learning-operator/ba-p/13501498 
35 “Reprosyn: Synthesising Tabular Data,” Github, 2022, https://github.com/alan-turing-institute/ 

reprosyn; “Synthcity,” Github, 2024, https://github.com/vanderschaarlab/synthcity; “DataSynthesizer,” 

Github, 2023, https://github.com/DataResponsibly/DataSynthesizer; DataCebo, “SDGym,” Github, 2024, 

https://github.com/sdv-dev/SDGym; “DPART | Differentially Private Auto-Regressive Tabular,” Github, 

2024, https://github.com/hazy/dpart 
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is to sequentially synthesise variables using classification and regression 

models.36 

 

The process can be thought of as initially fitting a series of models. These 

models make up the generator. Then, these models can be used to generate 

data. When a model is used to generate data, we sample from the predicted 

terminal node to get the synthetic values. The distribution of in the node can 

be smoothed before sampling. 

 

Refer to the footnote for relevant papers on this method.37  

 

 Deep Generative Models 

(E) Generative Adversarial Networks (GANs), contributed by Betterdata.ai  

Generative Adversarial Networks (GANs) are deep generative models that excel 

in synthesising complex, high dimensional datasets. Through an adversarial 

process, the generator creates synthetic data which a discriminator evaluates 

for realism, prompting a continual improvement in the synthetic output. This 

iterative refinement enables GANs to produce synthetic data that closely 

resembles the original, outperforming non-deep learning techniques in 

complex real-world datasets. 

GANs also demonstrate the ability to handle different data structures commonly 

found in enterprise settings. The development of specialised models like 

CTGAN and CTABGAN+ for static tabular data, TimeGAN for time series data 

and IRG for relational data highlights the adaptability of GANs in diverse data 

settings. 

(F)  Language Models  

Originally developed for natural language processing tasks, Transformers and 

large language models (LLMs) have also proven to be effective in synthesising 

tabular data. These models use the attention mechanism to understand 

 

36 For more information, refer to Khaled El Emam, Lucy Mosquera, and Richard Hoptroff, “Evaluating 

Synthetic Data Utility,” in Practical Synthetic Data Generation Balancing: Privacy and the Broad 

Availability of Data (O’Reilly Media, Inc, 2020). 
37 Khaled El Emam, Lucy Mosquera, and Chaoyi Zheng, “Optimizing the Synthesis of Clinical Trial Data 

Using Sequential Trees,” Journal of the American Medical Informatics Association 28, no. 1 (2020): 3–13. 
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complex relationships within data, making them ideal for creating synthetic 

datasets that mirror the complexity of the real world.  

LLMs also excel when original data is limited. Leveraging extensive pre-trained 

knowledge to fill in gaps in sparse original data and generate rich data in data 

scarce environments. However, while LLMs offer remarkable capability in 

tabular data synthesis, they require substantial computational power and time 

to train, presenting a trade-off. 

Another significant benefit of deep generative models is the ability to integrate 

Differential Privacy Stochastic Gradient Descent (DP-SGD), which introduces 

noise during training to ensure data privacy with provable guarantees. However, 

it is important to note that while DP-SGD enhances privacy, it can also limit the 

utility of the generated data, presenting a trade-off between privacy protection 

and data usefulness. 

  



33 

 

 

Annex D: Re-identification Risks  

As synthetic data generally tries to retain the statistical properties and characteristics 

of its source data, adversaries can attempt to re-identify or extract sensitive 

information about an individual from the synthetic data. The following describes the 

different types of re-identification attacks (commonly referred to as privacy attacks) on 

synthetic datasets.  

 

(A) Singling Out attack  

 

Singling out attack is generally conducted for outliers, e.g., unique attribute(s), 

rare data attribute(s) or unique combination of attributes. As the generated 

synthetic datapoints attempt to reflect or capture the presence and 

characteristics of such outliers, they offer a heightened possibility of singling 

out unique data records, and outliers are especially susceptible. While singling 

out may not represent a re-identification risk by itself, it may allow the adversary 

to gain information about the data record through using related datasets or 

other background information (see example in linkability attack). 

 

(B) Linkability attack  

 

For a linkability attack to occur, the adversary is assumed to have access to two 

sets of data i.e., (i) synthetic data and (ii) other publicly available data or private 

datasets where the adversary has privileged access. In a linkability attack, the 

adversary attempts to determine if any data points from the two data sets 

belong to the same individual, or group of individuals. 

 

For example, an adversary might conclude that in the synthetic dataset of 

patients in a community hospital (through singling out) that there is a high 

possibility of exactly one individual who is male, above 80 years of age, has 

diabetes, and is earning an annual income of $100,000 to $200,000. A successful 

attack occurs when the adversary correctly guesses that the synthetic data is 

trained from a dataset containing the data record of an 86-year-old male 

patient with diabetes, from the patient’s social media account linked to the 

community hospital and private knowledge that there is no other male diabetic 

patient above the age of 80 years old in that community hospital. The adversary 

now has additional knowledge about this patient, i.e., he has an annual income 

of $100,000 to $200,000. 

 

The linkability attack assessment examines if the additional availability of 

synthetic data improves an adversary’s ability to form linkages between 
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different datasets. Intuitively, the adversary’s chances of a successful attack are 

likely to improve when data utility of the generated synthetic data increases, i.e., 

the closer it resembles the statistical characteristics of the source data, the 

higher the chance of a successful attack.  

 

Therefore, it is important that data protection practices are incorporated during 

data preparation process for synthetic data generation. It is also imperative for 

any assessment of re-identification risks to differentiate between improvements 

of data utility that are desirable, i.e., to resemble general population trends that 

do not betray an individual’s involvement in a source dataset, or undesirable, 

i.e., resulting in increased re-identification risks of some individuals in the source 

dataset.   

 

(C) Inference attack  

 

The adversary is assumed to have access to a set of data attributes common to 

the source dataset and uses the information present in the synthetic data to 

infer sensitive attributes (e.g., other medical complications) about individual(s) 

in the source dataset.  

  

For instance, a successful attack occurs when an adversary can infer with high 

confidence that an 86 years-old male with diabetes (from the source dataset of 

the community hospital) has other medical complications such as hypertension.  

 

In an inference attack, we are examining if the additional availability of synthetic 

data would lead to a higher probability of successful inference with regards to 

sensitive attributes about the individual(s) in the source dataset. As before, any 

synthetic data with sufficient utility could be expected to improve an adversary's 

success rate.  

 

Importantly, this observation can apply to any person belonging to the same 

distribution (e.g., males above 80 years of age with diabetes), even when his 

data has never been used for training. 

 

Therefore, an inference attack assessment should measure the re-identification 

risk and then compare the incidence of successful attacks against some 

established baseline, for instance, people outside the source dataset. In such a 

scenario, one is measuring if the probability of successfully inferring data of 

someone in the source dataset is higher/lower than inferring data of someone 

not in the source dataset, so as to isolate and quantify the privacy leakage to 

individuals on top of identified population trends. 
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Annex E: Examples of Approaches to 

Evaluate Re-identification Risks 

This annex introduces different approaches to evaluate re-identification/privacy risks 

adopted by three industry members. These approaches can be applied to synthetic 

data regardless of the generation method used.  

 

(A) Approach 1  

Contributed by Dr Khaled El Emam, University of Ottawa 

Attribution disclosure. This is an extension of the traditional notion of identity 

disclosure to synthetic data. It considers the similarity of a synthetic record to a 

real record, conditional upon the identity disclosure risk of the original (real) 

dataset).38 Conceptually, this evaluates the extent to which an adversary would 

learn something new about an individual by finding a record that looks like 

them (i.e., has the same values on the indirect identifiers) in the synthetic data. 

Attribution disclosure can be interpreted as a probability and an acceptable 

value of 0.09 (within the range defined in ISO/IEC 27599) is often used. 

For computation of the attribution disclosure, the following article describes the 

process in depth: https://www.jmir.org/2020/11/e23139/. 

Membership disclosure. This evaluates the extent to which an adversary would 

learn that an individual from the same population as the real data was included 

in the training dataset for the generative model.39 Knowledge that someone is 

in the training dataset can reveal something about the target individual if the 

training dataset has a defining characteristics (e.g., they were all people with a 

particular disease). This can be defined as a relative F1 score measuring accuracy 

in determining membership corrected for a naïve determination, with a typical 

value of relative F1 = 0.2 used as a threshold. 

For the membership disclosure, the following article describes the details of the 

calculation: https://academic.oup.com/jamiaopen/article/5/4/ooac083/675849 

2?searchresult=1. 

 

38 Khaled El Emam, Lucy Mosquera, and J. Bass, “Evaluating Identity Disclosure Risk in Fully Synthetic 

Health Data: Model Development and Validation,” Journal of Medical Internet Research 22, no. 11 (2020): 

e23139. 
39 Khaled El Emam, Lucy Mosquera, and Xi Fang, “Validating A Membership Disclosure Metric For 

Synthetic Health Data,” Journal of the American Medical Informatics Association 5, no. 4 (2022): 00ac083. 
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(B) Approach 2  

Contributed by A*Star 

In Approach 2, the assessment and evaluation framework for quantifying 

privacy risk in synthetic data are detailed in https://github.com/statice/ 

anonymeter, wherein the proposed set of methods will generate three privacy 

risk threshold scores based on attack-based evaluations for the three major 

risks, mainly (i) singling Out attack, (ii) linkability attack, and (iii) inference attack.  

As compared to ML-based alternatives, the framework provides a 

computationally efficient and statistically robust method for measuring privacy 

risks. As a first step, we split the source dataset into two disjoint subsets, namely 

(i) control (20-30%) and (ii) training (70-80%), with the former performing the 

role of a pseudo set of public individuals and the latter as the training dataset. 

Clearly, the control dataset can never be used for training, but instead, serves 

as a privacy attack baseline measuring the ability of the synthetic dataset to 

“infringe” the privacy of individuals it has never used. In other words, the control 

dataset represents the population that has not contributed to the synthetic data 

generation process, and successful knowledge gained from attacking the 

control dataset is, to a certain extent, some measure of the synthetic dataset’s 

“utility”.  
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To that end, two separate attacks were performed, namely the (i) control attack 

and the (ii) main attack. The control attack targets the control dataset and 

measures patterns common to the whole population; the main attack targets 

the training dataset and measures patterns common to the whole population 

and possible biases towards the training dataset. The computed asymmetry 

between the two attacks provides a fair measurement of how effective the 

synthetic data is in differentiating individuals in the training dataset from the 

larger population, while grounding the obtained privacy-risk metric with some 

reasonable baseline from which to make further interpretations.  

Lastly, the framework also measures a “naïve” baseline that assumes no prior 

knowledge of the synthetic dataset and is therefore, entirely dependent on luck. 

This closes a loophole where one might erroneously assume that the generated 

synthetic dataset is risk-free because it has extremely poor fidelity/utility and/or 

when the designed inference/linkabililty attacks or synthetic data is insensible 

in the first place. In these scenarios, the “naïve” attack might outperform the 

other two attacks, indicating that the test is flawed. 

The computed asymmetry between the main and control attack is normalised 

to obtain a privacy risk leakage metric, known as “R”. This value is bounded 

between 0 and 1 and increases with the risks of privacy leakage. It is reasonable 

to first decide on an acceptable threshold value of “R” before generating the 

synthetic data; reversal of this process exposes one to considerable latitude in 

justifying one’s product. The said threshold can be fixed based on policy, and 

further mitigated based on the sensitivity of the training dataset and the 

availability of the generated synthetic dataset. 

It is crucial to note that the privacy risks are evaluated with respect to the 

individuals in the training database, and not the wider public. As such, privacy 

is compromised when an adversary finds it easier to (i) determine if an individual 

belongs to the training database and (ii) derive details of an individual from the 

training database otherwise undisclosed.  

 

References 

For more details, a description of the framework and the attack algorithms can be 

found in the paper by M. Giomi et al. “A Unified Framework for Quantifying Privacy 

Risk in Synthetic Data.” In Proceedings on Privacy Enhancing Technologies Symposium 

(PETS 2023), 2023.  
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(C) Approach 3  

Contributed by Betterdata.ai 

Approach 3 audits the privacy integrity of the end-to-end Synthetic Data 

Generation (SDG) pipeline and not only the generated synthetic data. This 

approach is based on Differential Privacy (DP)40, which provides a mathematical 

quantification of individual privacy. DP quantifies the risk of someone deducing 

that specific personal data was included in the training dataset by looking at 

the synthetic data. The privacy loss is calculated using two parameters ε>0 and 

0≤δ≤1, where ε represents the maximum allowable privacy loss and δ 

represents the acceptable tolerance of this privacy loss being exceeded which 

is generally kept close to zero.   

The audit process begins by identifying the most sensitive outliers in the source 

dataset. These outliers have a 50% chance of being randomly excluded from 

the data used in the SDG pipeline. The next step involves conducting 

membership inference attacks on the synthetic data to attempt identification of 

these outliers. The success of these attacks, particularly how it exceeds a 50% 

baseline (random guess), indicates a potential privacy leakage. This sets the 

lower bound for the actual privacy loss. Using the award-winning privacy audit 

analysis developed by Steinke, Nasr, and Jagielski41, we convert membership 

attack statistics into high-confidence lower bounds on the privacy budget ε for 

tolerance δ. 

For detailed methodologies on conducting membership inference attacks, refer 

to the TAPAS framework42.  

Organisations can tailor their privacy budget, ε, to their specific requirements, 

reflecting the sensitivity of their data and aligning with industry benchmarks. 

The following are examples of publicly reported privacy budgets used in real-

world applications: 

 

 

40  Cynthia Dwork et al., “Calibrating Noise to Sensitivity in Private Data Analysis,” in Theory of 

Cryptography. TCC 2006. Lecture Notes in Computer Science, Vol 3876, ed. S. Halevi and T. Rabin (Berlin: 

Springer, 2006); Cynthia Dwork and Aaron Roth, “The Algorithmic Foundations of Differential Privacy,” 

Foundations and Trends® in Theoretical Computer Science 9, no. 3–4 (2014): 211–407. 
41 Thomas Steinke, Milad Nasr, and Matthew Jagielski, “Privacy Auditing with One (1) Training Run,” in 

NIPS ’23: Proceedings of the 37th International Conference on Neural Information Processing Systems, ed. 

A. Oh, T. Naumann, and A. Globerson (Curran Associates Inc., 2023), 49268–80, https://dl.acm.org/ 

doi/10.5555/3666122.3668265 
42 TAPAS, “Welcome to TAPAS’s Documentation!,” tapas, 2022, https://tapas-privacy.readthedocs.io/ 

en/latest/index.html 
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Organization 

Name 
Data Type DP Budget (ε) Collection 

Period 
Purpose of Data 

Collection 

Apple [5,6] Health Data 
Safari 
Emoji 
QuickType 

2.0 
4.0 
4.0 
8.0 

2017-2024 Analytics 

2020 US Census 

Data [7,8] 
Housing Unit 

Data 
Person’s File 

2.47 

  
17.14 

2020 Deciding Fund 

Distribution, 
Assisting States 

 

For more details, please refer to Betterdata.ai URL at How_it_works 

(betterdata.ai). 
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