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“In recognition of those committed to 
safeguarding identities and advancing 
privacy in the digital realm. Your dedication 
to the ethical use of technology shapes a 
future where innovation coexists 
harmoniously with personal privacy.”



Preface 

Welcome to “Face De-identification: Safeguarding Identities in the Digital Era.” 
As the author/editor of this book, I am honored to present this comprehensive 
exploration into the intricate realm of safeguarding identities in an increasingly 
digital landscape. 

The idea for this book stemmed from a deep-rooted concern for privacy 
and security in today’s technologically advanced world. The scope of this work 
encompasses an extensive study of face de-identification techniques, aiming to 
address the critical challenges faced in protecting identities amid the pervasive use 
of facial recognition technologies. 

Our intent with this book is to offer a thorough examination of various face 
de-identification methodologies, elucidating their intricacies, strengths, and limi-
tations. Through a structured approach, we have endeavored to present an array of 
techniques, from obfuscation-based methods to advanced deep generative models, 
catering to a diverse audience interested in understanding the multifaceted aspects 
of preserving privacy in digital spaces. 

This book is designed for scholars, researchers, practitioners, policymakers, 
and individuals curious about the intersection of technology and privacy. It serves 
as a resource for academics delving into the complexities of identity protection, 
professionals implementing privacy measures, and enthusiasts seeking a deeper 
understanding of face de-identification in an evolving digital world. 

Sydney, NSW, Australia Bo Liu 
November, 2023
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About the Book 

Our combined team from University of Technology Sydney (UTS) and Shanghai 
Jiao Tong University (SJTU) started to work on the topic of face de-identification 
from 2020. Our findings in state-of-the-art de-identification technology have 
been invaluable, making the insights and perspectives highly commendable and 
respected. 

In this compelling work, the reader is presented with an insightful journey into 
the world of face de-identification. As the team’s engaging narrative unfolds, you 
will be guided through the intricate landscape of safeguarding identities in the digital 
era. 

As an expert in privacy protection, I have witnessed the evolution and impact 
of technologies on our daily lives, especially with respect to privacy and security 
concerns. The exploration of face recognition and de-identification techniques in 
this book is timely and essential in our increasingly interconnected world. 

This book introduces a comprehensive exploration of face de-identification 
techniques, shedding light on the complexities and challenges faced in this field. The 
innovative strategies and ethical considerations presented here mark a significant 
step forward in the ongoing dialogue on privacy and identity protection. I am 
confident that this work will contribute significantly to the discourse on privacy 
and technology, fostering deeper insights and inspiring further advancements in this 
crucial area. 

I commend all my co-authors for their dedication and expertise in compiling this 
significant contribution. It is my privilege to introduce this impactful work to readers 
and commend its relevance, timeliness, and scholarly merit.

xi
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Chapter 1 
Introduction 

1.1 Background and Motivation 

In recent years, the world has borne witness to a rapid surge in artificial intelligence 
technologies, particularly those rooted in deep learning, alongside the widespread 
proliferation of face recognition applications. This technological renaissance, how-
ever, brings with it a pressing concern—privacy [1–4]. Amidst these groundbreaking 
advancements, faces stand out as one of the most sensitive forms of biological 
information, intimately connected to personal identity. The essence of face recog-
nition lies in its biometric authentication, a characteristic that is both unique and 
irrevocable. Yet, the consequences of this technology extend far beyond mere 
identity verification. On the one hand, when harnessed for cross-referencing with 
other databases, it unveils a wealth of an individual’s sensitive information. A 
landmark study by Acquisti et al. [5] underscored how faces can serve as the link 
connecting diverse databases, revealing trails associated with various personas and 
ultimately undermining privacy. On the other hand, after confirming the identity 
of a face through face recognition technologies, advanced visual analysis and 
understanding tools can infer a large amount of sensitive privacy information from 
the corresponding visual face. For instance, occupation [6] and health status [7]. 
This poses a serious threat to the security of personal information. 

In light of these growing privacy concerns, the field of face de-identification 
has emerged as a vital research domain within the realms of security and privacy. 
Face de-identification, a process that conceals facial features while preserving 
utility for identity-unrelated applications, has found applications in a wide range of 
scenarios, from anonymizing faces in media interviews and video surveillance [6] 
to safeguarding privacy in medical research [7], and beyond [8, 9]. 

The ubiquity of image acquisition in our daily lives—be it sharing personal 
images on social media, online learning with cameras, or public safety 
surveillance—renders the need for enhanced privacy protection all the more critical. 
Existing privacy safeguards often prove inadequate, allowing third parties to collect 
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human facial images without consent for large-scale data analysis or questionable 
applications. 

Prominent social media platforms like Google, Facebook, and Shutterfly have 
faced scrutiny for compromising the privacy of millions by inadvertently leaking 
private photos to commercial entities, thus embroiling themselves in biometric 
privacy disputes. Conversely, the need for extensive public facial image datasets to 
fuel the development of cutting-edge deep learning models has led to the creation of 
invaluable resources. Yet, these repositories carry inherent privacy risks, resulting 
in increased restrictions on data sharing. Notably, datasets such as Microsoft’s 
MS-Celeb-1M, Duke’s MTMC, and Stanford’s Brainwash were, at various times, 
withdrawn from public access due to privacy concerns. 

The growing spotlight on privacy issues has prompted the enactment of stringent 
laws and regulations, notably the General Data Protection Regulation (GDPR) [10, 
11], which prohibits companies from collecting, sharing, or analyzing user data 
without informed consent. Within the GDPR framework, privacy information 
encompasses “personal data related to an identified or identifiable natural person,” 
underscoring the paramount importance of protecting personal identity, particularly 
in the context of facial image data. 

This book, “Face De-identification: Safeguarding Identities in the Digital Era,” 
endeavors to explore the multifaceted landscape of face de-identification. It delves 
into a wide array of methods and strategies aimed at preserving facial sensitive 
information, notably identity, while retaining utility for applications unrelated to 
identity. Through a comprehensive examination of this crucial field, we seek to 
provide both practitioners and researchers with the knowledge and tools necessary 
to navigate the intricate intersection of technology, privacy, and identity protection. 

1.2 Face Recognition and Face De-identification 

From the background and motivation, it can be seen that face de-identification 
is a benign technology born to stop face recognition from invading personal 
privacy, and the two are in a state of confrontation with each other. In order to 
design excellent face de-identification technology, a thorough understanding of face 
recognition technology is a necessary condition. Therefore, next we will introduce 
face recognition and face de-identification separately. 

1.2.1 Face Recognition 

Face recognition is a biometric technology that automatically recognizes people’s 
facial features including statistics and geometric features, which is one of the most 
important applications of image analysis and understanding. Face recognition tasks 
can be further divided into binary classification and multiclassification. The binary
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Fig. 1.1 The face recognition process. First, the input image or video is detected and possibly 
tracks (just for video) to localize the faces. Second, the detected faces are aligned to normalized 
canonical coordinates. Third, deep facial features are extracted by various methods. After well-
designed feature comparison, the identity of the input face data is finally recognized 

classification task is also called face verification, which is used to compare whether 
two images have the same identity. The multiclassification task is also called face 
retrieval, such as searching for a face with a specific identity in a database of many 
faces. The widely known face recognition is the abbreviation for identity recognition 
and verification based on optical facial images. The face recognition process can 
be simply summarized as using a computer to analyze a face video or image. 
Firstly, it detects and possibly tracks (just for videos) the faces, so as to localize 
them. Secondly, it aligns the faces to normalized canonical coordinates. Thirdly, it 
extracts effective facial features. Finally, it determines the identity of the face object 
through a comparison of the above-mentioned features. The whole process is shown 
in Fig. 1.1. 

The research on face recognition can be traced back to the late 1960s. The 
main idea is to design feature extractors and then use machine learning algorithms 
for classification. Traditional methods rely on hand-made features, such as edge 
texture description, and combine with machine learning techniques such as principal 
component analysis, linear discriminant analysis, and support vector machines. The 
early methods based on geometric features focused on extracting contours and 
geometric relationships of face components and using the geometric descriptions of 
shapes and structural relationships as features to construct several feature vectors, 
including the distance, curvature, and angle between two specified facial keypoints. 
The advantages are fast recognition speed and low requirements of memory, while 
the disadvantages are that geometric features can only describe the basic facial 
information, ignore local subtle features, and result in the loss of local information. 
The current feature point detection technology is far from meeting the requirements 
in terms of accuracy.
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After introducing deep learning techniques into the field, the approaches have 
been transferred to extract features with neural networks, which has greatly 
improved the accuracy and robustness. The deep learning models can be trained 
by a large amount of data to learn the representation of various variability such as 
lighting conditions, postures, facial expressions, and so on. 

Today, face recognition technology has been widely used in our daily life. Face 
verification can be treated as a new way of identity confirmation for fast face 
comparison, mobile payment authentication, security identity verification, etc. Face 
retrieval can be applied to investigate suspects, complete search of missing persons’ 
databases, and repeated investigation of multiple certificates for one person. At 
present, the face recognition model can achieve satisfactory accuracy on a specific 
dataset, but the influence of illumination and posture is still the main challenge. In 
addition, cross-racial and cross-age recognition problems are also worth studying. 

1.2.2 Face De-identification 

Due to potential privacy issues, the application of face recognition technology is 
currently under controversy, and the face privacy protection task is receiving more 
and more attention. Face de-identification, the main content of this book, is an 
innovative technical idea to solve the dilemma. There is no consistent definition of 
de-identification in the existing literature. Ribaric et al. [12] defined de-identification 
in multimedia content as “the process of concealing or removing personal identi-
fiers, or replacing them with surrogate personal identifiers in multimedia content.” 
During this process, other facial features that are not related to identity should 
remain unchanged, such as expression, posture, and background. After this process, 
the de-identified face will be judged by the face recognition technology as no longer 
the same identity as the original face. At the same time, the identity-protected face 
is expected to retain as much similarity to the original image as possible for normal 
viewing and sharing and can still be analyzed and processed by other identity-
agnostic computer vision methods, such as face detection, motion monitoring, and 
emotion recognition. Additionally, better image quality and visual effects are also 
preferred. 

With face de-identification technologies, visual service providers can use face 
visual data to carry out legitimate scientific research, business analysis, security 
monitoring, social sharing, and other activities; ordinary individuals can enjoy the 
convenience of visual technology without worrying about their other biometric 
information due to personal identity associated with the disclosure. It effectively 
alleviates the concerns about personal privacy and security in today’s society. To 
sum up, providing identity protection for facial visual data is the trend of our time, 
which has great social significance and practical value. 

It is recognized that the main purpose of face de-identification is to conceal the 
identity information of a face. Images and videos are the two main visual data of 
human faces, and they are also the focus of face de-identification research.
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The face image de-identification algorithm can be viewed as a transformation 
function . δ that maps a given face image X to a de-identified image . X', aiming to 
mislead the face recognition model by reducing recognition accuracy. The process 
can be formulated as 

.δ(X) = X' (1.1) 

s.t. : ID{X} /= ID{X'}. 

Here the .ID{⋆} indicates the identity of . ⋆ determined by the face recognition model. 
The face video de-identification algorithm can also be viewed as a transformation 

function . δ that maps a given face video .V = (v1, v2, . . . , vn) to a de-identified video 
.V ' = (v'

1, v
'
2, . . . , v

'
n), where the faces in the frames with the same serial number 

in V and . V ' will be judged as not the same identity by the face recognition model. 
The process can be formulated as 

.δ(V ) = V ' (1.2) 

s.t. : 1 ≤ i ≤ n, ID{vi} /= ID{v'
i}. 

In the past few years, researchers have proposed a series of face de-identification 
methods. The initial traditional methods perform perturbation operation on the face 
region. Recently, more approaches based on deep learning have been proposed to 
improve the quality of de-identified results. 

It is obvious that face de-identification is a newly emerging research topic. 
Unfortunately, this topic is very challenging due to the need to meet the needs of 
multiple parties with conflicting interests, as well as the need to deal with advanced 
and time-honored face recognition technology. Specifically, current research on the 
protection of facial visual identity needs to address the following three common 
technical problems. 

The first problem is the difficulty of learning high quality identity representation. 
In recent years, Deep Generative Network (DGN) has made great achievements 
in the direction of facial visual synthesis. The prerequisite for using its powerful 
generation ability to help protect visual identity privacy is to learn and obtain facial 
identity representation. However, faces contain a wealth of biological character-
istics. How to obtain pure (known as disentangled in the field of deep learning) 
facial identity representation is crucial to protect identity while not affecting other 
information. Facial identity is a unique biological characteristic. Other facial visual 
features, such as hair color, hairstyle, smile, age, gender, skin color, etc., can be 
divided into discrete categories based on demographic data and intuitive perception. 
However, because the visual identity of a human face uniquely corresponds to 
each live person, it cannot be discretely classified like the other visual attributes 
mentioned above. At present, researchers can only give descriptive definitions of 
facial visual identity but cannot carry out mathematical modelling. These make it 
difficult to learn and obtain disentangled identity representations of faces.



8 1 Introduction

The second problem is the difficulty to disable face recognition, preferably 
without resorting to other real identities in the process. The current recognition 
accuracy of face recognition technology on test datasets is close to 100. %. The  
strong recognition ability makes it difficult to protect facial visual identity. Different 
from the recently popular face swapping topic, face de-identification requires that 
other identity-agnostic attributes should be kept as unchanged as possible while 
the identity varies. In other words, the appearance of the generated face must be 
kept as the original one as much as possible, so the effect of identity protection 
obtained by simply swapping the face with any other character is bad. In addition, 
in view of the increasingly stringent laws related to the protection of facial identity 
in recent years, there is a great legal risk in using face swapping and other methods 
to directly use real human identities as reference to assist in creating fake identities. 
Researchers have begun to focus on designing methods to generate virtual fake 
identities without referring to other real identities. Furthermore, de-identification 
methods are expected to have additional capabilities such as providing theoretical 
support, recoverability, and interpretability, all of which are challenging. 

The third problem is the difficult tradeoff between privacy and utility. It can be 
seen from the definition of face de-identification that this task requires protecting 
visual identity while keeping other biometric characteristics unchanged. In other 
words, the protected face should have identity privacy and can still be used for tasks 
unrelated to face recognition. Specifically, it is not difficult to simply hide, remove, 
or replace the true identity in the face visual data. Simple blurring or color block 
covering is enough. However, how to make the face with modified identity still 
practical is tough, which means having quality and visual effects that are comparable 
to the original data. Furthermore, how to keep other identity-agnostic biometric 
characteristics unchanged as much as possible is very difficult. Generally speaking, 
the increase in the effectiveness of identity privacy protection will lead to a decrease 
in the utility of the de-identified results, which is summarized as the well-known 
privacy–utility tradeoff dilemma in this field [13] and is the focus of all face de-
identification research works. 

1.3 Book Overview 

In order to move the face de-identification research forward, this book presents 
a comprehensive investigation into face de-identification techniques for privacy 
protection. On top of a comprehensive overview of the main-stream de-identification 
methods, we also present our latest research outcomes that can effectively 
anonymize facial images and videos while preserving data utility for downstream 
tasks. 

The book is organized into three main parts. Part I provides an introduction to 
the problem. It describes the background and motivation for face de-identification, 
defines key concepts, and summarizes the threat models and regulations.
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Part II delves into various face de-identification techniques. It provides an 
overview of different categories of methods including obfuscation-based methods, 
k-same algorithm based methods, adversarial perturbation-based methods, and 
generative model-based methods. 

Then, detailed descriptions of novel techniques [14–27] developed by the authors 
across image and video modalities are then presented in dedicated chapters. This 
book proposes a total of four schemes to protect the identity privacy of face images 
and one scheme to protect the identity privacy of face videos. All five solutions 
address the common technical challenges described in Sect. 1.2.2. In particular, each 
technology has individual characteristics. The main content of these solutions is 
shown in Fig. 1.2. 

Chapter 4 introduces a de-identification algorithm centered around facial 
attribute editing, marking the first methodology presented in this book. This 
approach combines principles from differential privacy theory and k-anonymity 
to establish privacy metrics, ensuring protection through the indistinguishability of 
attributes within dataset images. The overall process comprises three stages: facial 
attribute prediction, privacy-preserving attribute obfuscation, and the generation of 
de-identified results. In comparison to previous de-identification algorithms based 
on attribute editing, this approach additionally takes into account the resemblance 
between the de-identified image and the original, as well as the controllability of 
the degree of privacy protection. This flexibility enables adjustments in the tradeoff 
between privacy and utility. 

Chapter 5 presents an identity representation manipulation-based technology, 
which is the second scheme in this book aimed at achieving de-identification for face 
images. It combines the deep generative network with the traditional differential 
privacy theory and proposes a three-stage face image identity protection framework. 
In the first stage, a DGN is trained to disentangle identity representation in the 
latent space. In the second stage, the .ϵ-IdentityDP mechanism based on local 
differential privacy theory is devised to protect the identity feature. In the third 
stage, realistic identity protection face images are reconstructed by the frozen 
trained DGN. This method can provide theoretically guaranteed protection and 
an adjustable privacy–utility tradeoff for identities. It also has good generalization 
ability and low computational overhead. 

Chapter 5 exclusively concentrates on the de-identification process, aiming 
to globally control the level of privacy protection. In order to further enhance 
controllability for individual images and the diversity of de-identification, Chap. 6 
introduces an improved latent space identity editing method. Users can achieve 
personalized and diverse de-identification results by configuring passwords and 
privacy levels, corresponding to the direction and degree of identity variation. 
Additionally, it is worth noting that in certain specific scenarios where the use of 
original images is preferred, such as in criminal cases, the framework proposed in 
Chap. 6 also includes recoverability. Under authorized conditions, it can reconstruct 
the original image based on the de-identification results. 

It has been found that when processing face images with different expressions 
and poses by the technology of Chaps. 5 and 6, inexplicable artifacts often appear
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in the generated images. Furthermore, its process of obtaining the identity repre-
sentation of the latent space through adversarial training in a DGN is cumbersome 
and lacks interpretability. Therefore, Chap. 7 introduces a two-stage framework with 
better model explainability, which is the fourth face image de-identification scheme 
in this book. The first stage is to learn a disentangled identity representation of 
the three-dimensional (3D) space and protect the identity representation based on 
a random Gaussian mechanism by an NeRF-based model. The second stage is to 
obtain high quality realistic de-identified face based on generative priors and parsing 
maps of the original image. This method uses 3D knowledge and realizes privacy 
and utility step by step, hence can well maintain various expressions and poses of 
the original face, and has better explainability. Specially, it can generate results 
with high utility and provide an adjustable privacy–utility tradeoff, having good 
generalization ability. 

If the method in Chap. 5 is directly applied to face videos, it will be discovered 
that the utility of the generated videos is seriously deteriorated. In addition, 
processing face videos frame by frame wastes a large amount of unnecessary 
computing resources. In order to improve these two problems, Chap. 8 describes 
a modular framework guided by deep motion flow, which implements reversible 
de-identification for face videos. The facial motion flow between adjacent frames 
can be calculated through the motion flow module, and then a complete identity-
protected (or identity-recovered) video can be produced based on the first frame 
protected by the Protection Module (or recovered by the Recovery Module). In 
order to adapt to the nonstandard poses and expressions, it also designs an effective 
Affine Transformation Module to normalize/restore the first frame face image to 
the standard/original layout. It is worth noting that the reason why the image 
processing method in Chap. 7 is not considered here is that this method requires 
3D reconstruction of the face to initialize the 3D parameters, so the computational 
cost is more than that of the DNN-based method. And this is obviously not suitable 
for video processing. This approach can do reversible face de-identification, has low 
computational overhead, and can provide an adjustable privacy–utility tradeoff. 

Part III concludes the book by discussing future directions and open challenges. 
It reflects on the progress made as well as opportunities for further advances in this 
important research field. 

In summary, this book makes significant research contributions around designing 
and evaluating face de-identification models that offer stringent privacy guarantees 
while retaining utility. The contents offer readers a comprehensive treatment of this 
problem and provide an organizational structure to easily navigate between intro-
ductory material, technical chapters, and conclusions. Researchers and practitioners 
in multimedia security and privacy will find this a valuable reference.
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Chapter 2 
Facial Recognition Technology and the 
Privacy Risks 

2.1 Face Recognition Technology 

Facial recognition technology has advanced rapidly in recent years, driven by 
breakthroughs in deep learning. Deep neural networks (DNNs) now rival and even 
surpass human performance on facial verification and identification tasks. In this 
subsection, we provide an overview of key developments in deep-learning-based 
face recognition algorithms that have propelled progress in this field. 

DeepFace [1] was a pioneering deep learning model for face verification and 
improved face alignment method with an additional 3D model. The pipeline 
includes detection, alignment, representation, and classification. 

DeepID [2] was proposed for multiclassification and to obtain the highly compact 
and discriminative advanced identity feature by using a small number of hidden 
variables to represent different identities. In order to obtain effective feature 
representations to reduce intraclass differences and expand interclass differences, 
DeepID2 [3, 4] proposed to apply deep convolutional networks and simultaneously 
use recognition features and verification features as supervision. DeepID3 [5] 
proposed two DNN architectures constructed from the stacked convolution and 
inception layers proposed in VGGNet and GoogLeNet. 

More recent models like FaceNet [6] and SphereFace [7] have focused on map-
ping face images into compact Euclidean or angular embeddings where distances 
directly correspond to face similarity. FaceNet [6] used triplet loss to map face 
images to Euclidean space, and the distance in this space represents the similarity 
between facial images. SphereFace [7] converts the softmax loss from Euclidean 
distance into angular interval and introduces the multiplicative angular margin. 
CosFace [8] also proved the effectiveness of mapping to hyperspherical space, 
which proposed the normalization of feature vectors and additive cosine margins. 
Currently, ArcFace [9] was considered to be the most advanced face recognition 
model and improved its performance by adding angular spacing to get tighter feature 
distributions and more pronounced decision boundaries. 
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Overall, deep learning has driven rapid progress in face recognition. However, 
there remain challenges in handling pose, illumination, and age variations. Future 
work could explore meta-learning approaches to learn more generalized feature 
extractors that are invariant to these factors. Integrating contextual and semantic 
information beyond raw face images may also improve recognition abilities. 

2.2 Threat Models and Privacy Risks 

The increasing capabilities of facial recognition raise important privacy concerns 
regarding mass surveillance, loss of anonymity, and lack of user consent. Key risks 
like pervasive tracking, unauthorized biometric data collection, insecure databases, 
and algorithmic bias must be addressed through comprehensive regulations, audits, 
and public oversight. 

Several specific privacy risks associated with facial recognition technology are: 

(1) Surveillance and Tracking: Widespread use of facial recognition for monitoring 
and tracking people’s movements enables pervasive surveillance by both gov-
ernments and corporations. This infringes on privacy rights and civil liberties, 
with the potential for constant surveillance chilling free speech, assembly, and 
individual autonomy. Strict regulations are needed to prevent unchecked use of 
facial recognition technology for mass surveillance. 

(2) Lack of Consent: Facial recognition systems deployed in public spaces often 
operate without informed consent, exploiting people’s biometric data without 
their permission. This violates privacy expectations and should require opt-
in consent for ethical deployment. Scenarios like law enforcement accessing 
driver’s license photos to run facial recognition searches have faced opposition 
over consent violations. 

(3) Biometric Data Leaks: Facial recognition systems require aggregating large 
biometric datasets, which are prime targets for data breaches and cyberattacks. 
Centralized databases of facial recognition data could enable widespread 
identity theft and financial fraud if compromised. Decentralized approaches like 
on-device processing help mitigate this. Data minimization, encryption, access 
controls, and audits are also important safeguards. 

(4) Misuse of Data: There are risks of collected facial biometric data being 
exploited for purposes other than intended. For example, a retailer using 
facial recognition for loss prevention could potentially sell their database to 
advertising firms or data brokers seeking to profile and target customers. Strict 
limitations and penalties for unauthorized secondary uses are important. 

(5) Bias and Discrimination: Facial recognition systems have exhibited demo-
graphic biases, with higher error rates for women, minorities, and younger 
people. This leads to possibilities of denial of services, profiling, and other 
discrimination based on inaccurate automated decisions. Ongoing audits for 
bias mitigation are critical for ethical deployment.
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(6) Lack of Anonymity: Facial recognition technology can rapidly link someone’s 
real identity to activities, eliminating anonymity. This could expose people’s 
political views, sexuality, health conditions, and other sensitive details without 
their consent. 

(7) Chilling Effects: The possibility of ubiquitous facial tracking can discourage 
people from participating in public events and exercising rights like protest 
and free speech. Just knowing they could be identified and located could 
deter people from attending political meetings, religious services, protests, or 
healthcare clinics. 

As facial recognition technology becomes more pervasive, comprehensive 
regulations and safeguards are needed to prevent privacy violations and unethi-
cal use: 

• Strict audits for bias, especially for use in law enforcement, employment, 
housing, credit decisions, etc. 

• Prohibitions on using facial recognition for illegal discrimination based on 
protected characteristics like race, gender, age, etc. 

• Requirements for openness and transparency about where facial recognition 
is in use and for what purposes 

• Guaranteeing individuals’ rights to access, correct, and delete their facial 
biometric data 

• Requiring opt-in consent for facial recognition enrollment and identification, 
avoiding exploitation of data like driver’s license photos 

• Assessing whether less intrusive alternatives like badges or keys could meet 
business needs vs. facial recognition 

• Legal protections and penalties for unauthorized access, retention, or misuse 
of biometric data 

• Decentralized approaches using on-device processing and encryption rather 
than centralized databases vulnerable to breach 

• Oversight bodies and ethical review processes for evaluating facial recog-
nition system proposals, akin to Institutional Review Boards for human 
subjects research 

Overall, careful regulation and technical safeguards are essential to prevent 
abusive uses of facial recognition that could threaten privacy, enable discrimination, 
and erode civil rights and liberties. A collaborative approach balancing innovation 
and individual rights will help guide the responsible development of this powerful 
but potentially dangerous technology. 

2.3 Regulations and Acts on Facial Data Privacy 

Facial data privacy is an increasingly important area of concern, and regulations 
related to it can vary by country and region. Here are some of the key regulations 
and acts that were relevant to facial data privacy:
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European Union—General Data Protection Regulation (GDPR) [10] The 
GDPR, applicable in the European Union, includes provisions related to the 
processing of biometric data, which includes facial recognition data. It places 
strict requirements on obtaining consent and ensuring the security and privacy 
of such data. The GDPR has spurred increased investment in privacy-preserving 
techniques by EU tech companies. However, ambiguity around consent and legal 
bases for facial recognition systems in public places remains a challenge. 

United States—California Consumer Privacy Act (CCPA) [11] The CCPA, 
applicable in California, grants consumers rights over their personal information, 
which includes biometric data. It requires businesses to disclose what data they 
collect, give consumers the right to opt-out, and provide safeguards for sensitive 
data. 

United States—Illinois Biometric Information Privacy Act (BIPA) [12] BIPA 
is a state law in Illinois that imposes strict requirements for collecting, storing, and 
using biometric data, including facial recognition. It has been the basis for several 
lawsuits against tech companies. Overall, the United States lacks comprehensive 
protections comparable to GDPR; privacy advocates and states pushing for stronger 
regulations. 

Canada—Canadian Privacy Laws [13] Canada has privacy laws at the federal 
and provincial levels that govern the collection and use of personal information, 
which may include biometric data. The federal law, the Personal Information 
Protection and Electronic Documents Act (PIPEDA), and provincial laws set the 
standards for data protection. 

Australian Privacy Act [14] The Australian Privacy Act governs the handling of 
personal information, including biometric data, by organizations and government 
agencies in Australia. 

Indian Data Protection Bill (Draft) India was working on a data protection bill 
that, when passed, is expected to regulate the processing of biometric data, including 
facial recognition, in the country. 

Singapore Personal Data Protection Act (PDPA) [15] The PDPA in Singapore 
regulates the collection, use, and disclosure of personal data, including biometric 
data. 

Chinese Personal Information Protection Law [16] China was in the process of 
drafting a comprehensive personal information protection law, which would likely 
include provisions related to biometric data. 

Overall, facial recognition regulation remains uneven globally. The EU has 
led with GDPR, but other regions are scrambling to catch up. There is a need 
for international coordination and ethical frameworks given global data flows. 
A balanced approach that enables innovation while empowering user rights and 
providing oversight will be important.
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2.4 Conclusion and Future Outlook 

The rapid evolution of facial recognition technology enabled by deep learning has 
yielded transformative capabilities for facial analysis and verification. However, the 
proliferation of this powerful technology has also raised critical privacy, ethical and 
regulatory concerns given the sensitivity of facial biometric data. 

Privacy risks like mass surveillance, lack of consent, and discrimination must be 
addressed through technical safeguards like encryption and decentralized processing 
as well as comprehensive regulations. As facial recognition applications continue 
expanding, sustained public engagement and oversight will be crucial to ensure 
ethical development and prevent abusive uses. 

Looking ahead, striking an optimal balance between innovation and regulation 
remains challenging but necessary. With collaborative efforts across technology, 
policy, legal, and ethics spheres, facial recognition could continue advancing 
safely in sync with societal values and interests. But this requires commitment to 
data protection, transparency, nondiscrimination, and preserving individual privacy 
rights. 

If developed responsibly, facial recognition technology holds enormous potential 
to benefit society in areas like security, accessibility, and convenience. Realizing 
this potential while avoiding potential harms will hinge on acknowledging and 
proactively addressing the dual promise and risks of this rapidly evolving capability. 
Maintaining public trust through ethical technology development and use should 
remain the guiding imperative going forward. 
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Part II 
Face De-identification Techniques



Chapter 3 
Overview of Face De-identification 
Techniques 

3.1 Face Image De-identification 

Face images refer to images with the human face as the main body, which may 
include hair, neck, and a small part of the upper body. The backgrounds of the 
images may be a pure color background plate or a complex natural scene. In 
this section, we will introduce related work on de-identification of face images. 
According to the technical means adopted to protect identity, we divide the 
current face image de-identification methods into four categories: obfuscation-
based methods, k-Same algorithm based methods, adversarial perturbation-based 
methods, and deep generative models-based methods. Below, we will introduce 
them one after another. 

3.1.1 Obfuscation-Based Methods 

Many face image de-identification methods that are widely used in daily life are 
based on obfuscation, and there are mainly four types. The first is blur, which refers 
to replacing each pixel in the sensitive area of the face by the weighted average 
of the pixels in its neighborhood; or following the approach of Ryoo et al. [1], the 
facial privacy-sensitive area is first downsampled by a specified multiple and then 
upsampled back to its original size. The blurred facial area will become smooth and 
the details will disappear. The second is pixelation, also known as mosaic, which is 
to divide the detected privacy-sensitive area of the face into a certain range of units 
(commonly rectangular units) in the two-dimensional (2D) space. Then the pixels in 
each unit are taken to the average value of the pixels in their areas [2]. The third is 
mask, which is to cover the detected privacy-sensitive areas of the face with opaque 
color blocks, of which black rectangular blocks are the most common. The fourth is 
pixel-level noise, which refers to adding random perturbations to all image pixels in 
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detected privacy-sensitive areas. Gaussian noise is the most commonly used random 
perturbation. These obfuscation-based methods are widely used in daily life because 
of their simplicity and ease of operation. You et al. [3] pixelated the facial area to 
protect identity based on the pretrained face detection network YOLO [4]. 

However, existing studies have shown that the identity protection provided by 
these technologies is fragile, and the identity information in the de-identified face 
images is still in danger of being recognized and leaked [5]. McPherson et al. [6] 
have proven that face images using obfuscation-based methods to protect identity 
are ineffective when facing with face recognition techniques based on deep learning, 
that is, the original identity can still be identified with high accuracy. Even worse, 
de-identification methods based on obfuscation destroy the utility of the image. 
Firstly, intuitively speaking, the visual effect of identity-protected images will 
become worse. Secondly, other identity-agnostic computer vision techniques often 
do not work well on (or cannot process) these de-identified images. Vishwamitra et 
al. [7] have demonstrated that blur and mask will affect the perceptual score of the 
image, and the masked images have an even lower perceptual score. 

In addition to the traditional obfuscation-based methods described above, 
researchers are also exploring more effective obfuscation methods for facial privacy-
sensitive areas. 

Melle et al. [8] design a reversible scrambling technique suitable for face images 
to protect identities. This technique uses an adaptive codebook to handle privacy-
sensitive areas, where the adaptive codebook consists of a set of background patches 
(image areas without sensitive information) processed by affine transformation. The 
main idea of this work is to exploit image self-similarity to encode images and 
combine the encoding scheme with a scrambling procedure to enhance privacy. The 
authors demonstrate that the tradeoff between privacy protection and utility can be 
achieved by varying the intensity of the scramble. 

Letournel et al. [9] propose variational adaptive filtering on the face area where 
keypoints have been detected. This method retains the key facial features (i.e., 
eyes, lips, and their corners) and better maintains the original facial expressions 
while hiding the true identity. Later, Rafique et al. [10] also propose a method to 
reconstruct face images using a trained Gaussian–Bernoulli Restricted Boltzmann 
Machine to generate models that can hide the true identity without changing the 
expression. 

Yuan et al. [11] design a reversible image visual privacy protection framework 
based on Joint Photographic Experts Group (JPEG) deformation. During the safe 
JPEG transmorphing, the selected private areas are applied to most types of regional 
visual obfuscations, such as masking, blurring, pixelation, inpainting, and warping. 

Chriskos et al. [12] develop a method to protect identity by hindering face 
detection. This method introduces artifacts into face images, such as noise and 
projection. These artifacts render automatic face detection improbable, while the 
entire image still retains enough information and is recognizable by humans. 

Dadkhah et al. [13] investigate the possibility of applying different half-toning 
algorithms to avoid automatic face detection and recognition. Half-toning is the 
method of changing a continuous tone of an image into black and white dots in a way



3.1 Face Image De-identification 25

that from the particular distance the change cannot be recognized by human eyes. 
Besides, the converted images are available for human observation. The authors 
also investigate the privacy-enhancing impact of multiple half-toning techniques, 
including Floyd–Steinberg dithering for RGB images, and Stucki dither diffusion, 
Bayern half-toning, and Jarvis half-toning for grayscale images. 

On the basis of achieving de-identification through obfuscation, some studies 
go further and begin to pursue the provision of theoretically guaranteed identity 
protection. Among them, Fan proposes a pixelation method based on standard 
differential privacy (DP) theory [14] and a fuzzy method based on DP theory [15]. 
Both of which hide privacy-sensitive information by adding controlled randomness 
to the input images, so as to protect individual characteristics and ensure image 
sharing with strict privacy guarantees. These two methods are shown to effectively 
reduce the success rate of reidentification attacks. 

Later, in order to obtain better image quality, Fan proposes another image con-
fusion solution based on metric privacy [16], a rigorous privacy notion generalized 
from DP. This method designs a random sampling mechanism that satisfies metric 
privacy, and uses singular value decomposition (SVD) to generate visually similar 
images with the same singular matrix but different singular values. Compared with 
the previous two methods [14, 15], the visual effect of [16] has been significantly 
improved. However, the perceptual information captured through SVD is limited, 
and the practicality of the generated images is still not ideal. 

Recently, Fan et al. demonstrate an interactive framework for obfuscation of 
face images in their work [17]. It integrates widely used image quality evaluation 
methods and practical face recognition technology. Users can view the performance 
of methods [14, 16] and the other two comparative methods on a dataset of real-
world face images. In addition, Liu et al. also propose an identity protection method 
guaranteed by DP theory by adding global noise [18]. 

In summary, the obfuscation operations will be reflected at the image level. The 
operations are not selective but will indiscriminately confuse all facial biometric 
features in areas that determined to be privacy-sensitive. While the identity is 
protected, information about other facial visual features is also hidden, and the 
resulting identity-protected images are often considered to have only limited (or 
no) utility. To make matters worse, some studies [19, 20] have proven that even face 
images that are obfuscated through some carefully designed methods are still likely 
to be identified by the face recognition model again. This makes obfuscation-based 
methods unreliable. However, from a computational perspective, obfuscation-based 
methods are mostly simple operations, so techniques from this category are very 
suitable for use in low-resource situations where the specific image and subsequent 
use of the face are not important.
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3.1.2 k-Same Algorithm Based Methods 

In order to improve the comprehensive performance of protecting the identity of 
faces, methods based on the k-same algorithm are proposed. Before the rise of deep 
learning, k-Same algorithm based methods once dominated the field of face image 
de-identification. As strong competitors to the obfuscation-based methods discussed 
in the previous subsection, the advantage of this type of method lies not only in 
better utility of the protected images but also in providing theoretically guaranteed 
identity protection. 

The work [21] of Newton et al. first proposes the k-Same algorithm to protect the 
identity of face image, whose specific steps are as follows. First of all, the dataset 
of face images is divided into clusters with size k based on the distance metric 
according to the facial features. Then, each face image to be processed will be 
replaced by the aggregation of its own cluster, i.e., the average face. Here, Newton et 
al. design k-Same-Pixel algorithm (averaging the original image pixel by pixel) and 
k-Same-Eigen algorithm (averaging the projected image of the original image) to do 
the aggregation. Because all k images in each cluster are represented by the same 
aggregated face so as to protect the real identity information, the k-Same algorithm 
gets its name. In addition, since each identity-protected face image appears k times 
in the entire privacy-preserving image dataset, and it can only match at most one of 
the k original faces, the k-Same algorithm can theoretically limit the risk of being 
correctly identified to 1/k. However, due to the small alignment error between the 
faces in the cluster, artifacts often appear in the images generated by the k-Same 
algorithm. 

Since then, many variants of the k-Same algorithm have been proposed, aiming 
to improve the utility of identity-protected face images, especially the visual quality. 
Among them, Driessen et al. [22] design a k-Same-Eigen-like algorithm that can use 
parameters to adjust the aggregation effect. Gross et al. propose further expansion 
methods of the k-Same-Select algorithm [23] and the k-Same-M algorithm [24]. 
The former divides the face dataset into mutually exclusive face groups based on 
the selected utility function (for example, measuring face similarity based on facial 
expression). The k-Same algorithm is then used separately in each group of faces. 
The latter creates a face by averaging the parameters of the Active Appearance 
Model (AAM) as a proxy for the original face image. The same team later designs 
a multifactor identity protection framework in [25], which can obtain better utility. 
Later, Prinosil et al. [26] analyze the implementation issues associated with the k-
Same-M algorithm and propose several heuristic methods to make the de-identified 
face look authentic while determining the expression or gender of the de-identified 
person. 

During this period, there are many k-Same algorithm based methods for de-
identification with the help of the AAM model. Among them, Meng et al. design 
the k-Same-furthest-FET algorithm [27], which recovers the data utility through 
transferring/cloning the facial expression from the original to the de-identified face. 
This algorithm is characteristic of not requiring complicated classifiers or high-
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level semantic information to describe facial expressions. After that, the same 
team makes many expansions centered on this algorithm and successively proposes 
the k-Same-furthest algorithm [28] and k-Diff-furthest algorithm [29]. The two 
derived algorithms pursue a better balance between privacy and utility from multiple 
perspectives. In addition, by applying the same identity change to all face instances 
of the same person, the team also proposes a face video identity protection method 
based on the k-Diff-furthest algorithm [30]. However, due to the interframe changes 
are not considered, the quality of the de-identified video is very mediocre. 

Chi et al. [31] propose an identity subspace decomposition method, which aims 
to depose the AAM feature space into an identity sensitive subspace and an identity 
insensitive subspace. After this, the sensitive identity information is separated from 
the identity-agnostic information, thereby effectively protecting the identity while 
maintaining the high utility performance of the resulting average face. Sim et al. [32] 
propose to use a subspace decomposition technique called multimodal discriminant 
analysis (MMDA) to decouple the AAM parameters of different facial attributes, 
which in turn enables control of the degree of identity change while keeping 
attributes such as age, gender, and race constant. In addition, Wang et al. [33] also  
introduce the work of using MMDA for identity privacy protection. Du et al. [34] 
propose a GARP-Face method based on AAM model to better preserve the original 
identity-independent biometric features. After representing the image by the shape 
and appearance parameters of AAM, Jourabloo et al. [35] select k images that are 
most similar to the attributes of the test image, formulate an objective function, and 
finally use gradient descent to learn the optimal weights for fusing k images. The 
faces aggregated by this method can retain more nonidentity attributes. 

With the rapid development of deep neural networks (DNNs), some researchers 
begin to combine the k-Same algorithm with DNNs and created a series of new 
methods. They hope that DNN’s ability to generate realistic images will better 
address the challenging privacy–utility tradeoff problem. Among them, Chi et al. 
[36] first extend their previously proposed subspace decomposition technique [31] 
to a deep learning model. The new model extracts identity representations known 
as facial identity preserving (FIP) features from input images and reconstructs faces 
from the average FIP features calculated based on the k-Same algorithm, resulting 
in faces with removed real identities that maintain good utility. After that, a series of 
methods with similar patterns have been proposed successively, such as k-Same-Net 
[37, 38], k-Dive-Net [39], K-samesiamese-GAN [40], AnonFACES [41], Chuanlu 
et al. [42], and FICGAN [43]. The utility performance of these methods to generate 
images has been significantly improved. 

In summary, the k-Same algorithm based method is a specific implementation 
of k-anonymity privacy theory [44, 45] in the context of face data. They use the 
statistical information of a set of face images to generate more realistic identity-
protected face images. Although these methods have good theoretical support and 
were once the technical pillar in the field of de-identification, they have significant 
limitations. 

Firstly, the k-Same algorithm assumes that each subject appears only once in 
the dataset, which may not hold true in practice. In real-world scenarios, the
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presence of multiple images from the same subject or images with similar biometric 
characteristics may result in lower privacy protection effect than the theoretical 
level. 

Secondly, the k-Same algorithm operates on the closed sets and produces 
corresponding identity-protected sets, which is not applicable for processing a single 
image or image sequences. 

Thirdly, the identity privacy-preserving results of such methods always look 
unnatural, let alone maintaining as many nonidentity features as possible with the 
corresponding original image. The de-identified face image will be significantly 
different from the original input image and therefore may lose unique features 
related to race, gender, age, expression, or posture, etc. These situations have been 
alleviated to a certain extent after the introduction of DNN, but there is still much 
room for improvement. 

Fourthly, the k-Same algorithm is sensitive to composition attacks [46] and 
attacks using background knowledge [47], so the privacy guarantee provided by 
this algorithm is not reliable enough in the face of these above two attacks. 

Fifthly, the k-Same family algorithm is not suitable for processing face videos. 
The k-Same algorithm requires that the input image set is specific to an individual, 
that is, in the image set, each person can only have one image, and there are no two 
images related to the same person. This makes the k-Same algorithm based methods 
generally not applicable to a set of frames taken from the same video sequence, 
since they usually contain facial images of the same person. Even if the method [30] 
achieves face video de-identification by applying the same identity change to all 
face instances of the same person, the utility performance of the identity-protected 
video will be significantly reduced compared to the original video. Therefore, new 
algorithms must be developed to protect identity privacy in face video sequences. 
The above five limitations indicate that there is still a long way to go in the research 
of face image de-identification. 

In the past six years or so, research progress on face image de-identification has 
made a huge leap. A series of new technologies that can better address the privacy– 
utility tradeoff problem have been proposed, all of which are largely supported by 
deep learning. The power of deep-learning-based models is that, given a sufficient 
training dataset, models containing a large number of parameters can be optimized 
end to end; a well-trained model can strike a good balance between privacy and 
utility, while being robust to various face recognition technologies. The model 
parameters can be automatically optimized by mature optimization algorithms 
through appropriate objective functions designed for input images, output images, 
intermediate features, etc. With the continuous improvement and development, the 
performance of this type of model has been significantly improved compared with 
previous methods. At present, there are two main categories of mainstream new 
technologies, which are adversarial perturbation-based methods and deep generative 
model-based methods. We will introduce them one by one in detail below.
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3.1.3 Adversarial Perturbation-Based Methods 

The development of deep learning has also given new life to face recognition, one 
of the oldest studied tasks in the field of computer vision. Behind the substantial 
improvement in recognition accuracy is the development of convolutional neural 
networks (CNNs) and the availability of large-scale face training dataset [48]. 
However, the decision-making of CNN models has been shown to be susceptible 
to interference by adversarial examples, which is produced by adding small pertur-
bations to images [49–51]. As long as the optimization is proper, just disturbing the 
pixels in the input image with an amount of disturbance that is imperceptible to the 
human eyes can cause the recognition model to make wrong judgments. The method 
based on adversarial perturbation can suppress the biometric feature of identity 
while preserving other nonidentity facial features well. During the training process, 
this type of model needs to continuously interact with the target face recognition 
system to weaken its identity recognition accuracy [52]. The final model can mislead 
the face recognition model by adding small but worst-case disturbances to the face 
image and produce de-identified faces that are highly similar to the original images. 

Some adversarial perturbation-based methods are dedicated to creating adversar-
ial physical devices. Among them, Sharif et al. design a pair of printable eyeglass 
frame for the target face recognition system [53]. There is about an 80% probability 
that the identity of the subject wearing this frame can be evaded from being 
correctly identified or to impersonate another individual. Later, the same research 
team designs a glass frame based on generative adversarial network (GAN) that 
can deceive the face recognition system under different imaging conditions (such 
as different lighting and angle) [54]. Later, Komkov and Petiushko also design a 
rectangular paper sticker that can be printed on an ordinary color printer [55]. As 
long as it is pasted on the hat, it can protect the wearer’s identity privacy even when 
facing Arcface [56], one of the state-of-the-art (SOTA) face recognition models. 
Although these methods do not affect other identity-independent biometric features 
of the face, they require the user to wear a specific equipment, which is neither 
convenient nor beautiful, so the application scenarios of these methods are very 
limited. 

More adversarial perturbation-based methods learn to add appropriate pertur-
bations to the image through training. Among them, literature [57] introduces the 
Penalized Fast Gradient Value Method, which is inspired by the Iterative Fast 
Gradient Value Method designed for general image [58, 59]. This method operates in 
the image space domain. The generated de-identified face images will be incorrectly 
identified with a high probability but can still be viewed and used by users normally, 
because these images resemble the original ones very much. 

During the same period, Oh et al. [60] introduce a general framework based 
on game theory for the user–recognizer dynamics systems and provide a case 
study that involves current state-of-the-art adversarial image perturbation methods 
and person recognition techniques. This method can derive optimal strategy for 
the user that assures an upper bound on the recognition rate independent of the
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recognizer’s counter measure. Liu et al. [61] combine the idea of adversarial 
image perturbation that is effective against AI and the obfuscation technique for 
human adversaries. Deb et al. [62] propose AdvFace, which uses GANs learning to 
generate minimal perturbations in the salient facial regions. The de-identified faces 
generated with this method are considered similar to the original images by human 
observers, and high success rates have been achieved on five advanced automatic 
face recognition systems. Dong et al. [63] propose an evolutionary attack algorithm 
that can model the local geometry of the search direction and reduce the dimension 
of the search space and produce minimal perturbation to the input face image with 
fewer queries. Zhong et al. [64] proposed DFANet, which applies the dropout layers 
to the proxy model during each iteration of generating adversarial examples. In this 
way, as the number of iterations increases, the class integration effect of different 
generative models can gradually improve the generalization ability of adversarial 
attacks, which can mislead unseen recognition models. The DFANet can increase 
the diversity of surrogate models and obtain ensemble-like effects. Zhang et al. 
[65] propose an adversarial privacy-preserving filter consisting of three modules: 
an image-specific gradient generator to extract image-specific gradient in the user 
end with a compressed probe model, an adversarial gradient transmitter to fine-
tune the image-specific gradient in the server cloud, and a universal adversarial 
perturbation enhancer to append image-independent perturbation to derive the final 
adversarial noise. This filter can add adversarial disturbance to the original image 
before uploading the photo to sharing services, which is able to mislead malicious 
face recognition models. 

Later, Yang et al. [66] propose a targeted identity protection iterative method, 
TIP-IM, to generate adversarial identity masks that can be overlaid on facial images 
to achieve better de-identification performance without sacrificing visual quality. 
In order to mediate the contradiction between model accuracy and adversarial 
robustness, the Deep Robust Representation Disentanglement Network (DRRDN) 
is proposed [67]. This network follows the autoencoder framework and produces 
robust representations by disentangling from natural adversarial examples. The 
representation is then aligned to eliminate the effects of adversarial perturbations. 
DRRDN can obtain adversarial examples with excellent robustness and accuracy. 
At the same time, the A. 3GN method [68] is proposed, which learns instance-level 
correspondence between faces by adding a conditional Variational Autoencoder 
(VAE) and attention module to GAN. A. 3GN also introduces a face recognition 
network as a third party to participate in the competition between the generator 
and the discriminator during training, which allows the attacker to impersonate the 
target person better. A. 3GN can generate natural faces and evade SOTA recognition 
networks. 

Recently, literature [69] proposes a two-stage training method, which firstly uses 
the attention module to extract the main features of the subject’s face and then 
generates small and almost invisible adversarial perturbations based on the main 
features of the face, so as to protect the original face image. Zhong et al. [70] believe 
that it is very unfriendly for a user to generate different protective perturbations for 
each photo, especially for video frame. So they propose to generate person-specific
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(class-wise) universal masks by optimizing each training sample in the direction 
away from the feature subspace of the source identity and name it as one person one 
mask (OPOM). OPOM generates privacy masks, similar to a customized invisible 
cloak, by solving an optimization problem that maximizes the distance between 
diverse deep features of the training images and the feature subspace of the identity. 
By using OPOM, an average user can only generate one adversarial mask and apply 
it to all photos and videos of that user, which saves the time of generating adversarial 
perturbations multiple times for different visual data of the same object. 

It is worth noting that although the adversarial perturbations imposed by the 
above methods can be very small after careful optimization, the original image 
will generally still have perceptible changes, accompanied by artifacts. In order 
to make these changes as unobtrusive as possible, some studies combine face de-
identification with face makeup tasks, integrating adversarial perturbations into 
makeup, which allows for a greater perturbation level and achieves identity privacy 
protection while beautifying the faces. Zhu et al. [71] deceive face recognition 
models by applying makeup in the eye area. Hu et al. [72] introduce a new 
regularization module along with a joint training strategy to reconcile the conflicts 
between the adversarial noises and the cycle consistence loss in makeup transfer, 
achieving a desirable balance between the attack strength and visual changes. 
This method hides adversarial perturbations in full-face makeup, improving visual 
enjoyment while achieving identity protection with a high success rate. 

In addition, there are some adversarial perturbation-based methods that make the 
image “poisonous” by adding elaborate perturbations and then protect the identity 
privacy of face images by training the targeted recognition model on a dataset 
containing the poisonous images. The recognition model that has been trained 
specifically will not be able to correctly determine the identity of a face. 

Shafahi et al. [73] adopt a poisoning attack and present an optimization-
based method for crafting poisons and show that just one single poison image 
can control classifier behavior when transfer learning is used. After full end-to-
end training under a “watermarking” strategy that makes poisoning reliable using 
approximately 50 toxic training instances of the selected person, they can control 
the recognition model’s judgment of the selected person’s identity during the test 
without reducing the recognizer’s performance in discriminating other objects. Zhu 
et al. [74] introduce a new “polytope attack” in which poison images are designed 
to surround the targeted image in feature space, so as to mislead the recognition 
model. In this attack, the authors generate multiple toxic images from the base class 
by applying small perturbations, which cause the toxic images to capture the target 
image within a convex polyhedron in the feature space, i.e., the poisonous images 
surround the target image in the feature space. After injecting poisonous images into 
the training dataset, a model trained on this dataset even with unknown architecture 
and parameters will fail to identify the target face. Similarly, Shan et al. [75] design 
the Fawkes model to help individuals put on unnoticeable “cloaks” (imperceptible 
well-designed pixel-level changes) before releasing their photos, so as to combat 
unauthorized facial recognition models. When these images are used to train a facial
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recognition model, the trained model will be unable to correctly identify the normal 
images of these users. 

Since the perturbation imposed on the image by the method based on adversarial 
perturbations is almost visually imperceptible, i.e., the utility of the generated image 
is very good, and its de-identification ability is always excellent when facing the 
target face recognition model, that the probability of identity being misjudged is 
very high, so the adversarial perturbation-based method is currently one of the most 
popular methods. However, this type of method still has the following key issues 
that need to be improved: 

• The training of adversarial perturbation-based methods often requires various 
interactions with the target system, so this type of method can only be guaranteed 
to be effective when it is used for specific and trained face recognition systems, 
that is, the generalization ability of such models is always weak. In practical 
applications, it is not known in advance what kind of recognition model will 
be used to invade privacy, let alone interacting with it multiple times during the 
training process such as frequent querying. Therefore, the application scenarios 
of such methods are very limited at the beginning, and this problem has not been 
alleviated until the researches on model generalization ability are paid enough 
attention to in recent years. 

• When adversarial noise is added to the face image, this type of method requires 
continuous optimization. As a result, the calculation complexity is generally high 
and the process is usually time-consuming, which makes them difficult to be 
applied to large-scale datasets. 

• The generated images sometimes still have artifacts, and when the degree of 
optimization is high, inexplicable weird spots will appear on the image, so the 
quality of the generated de-identified images still needs to be improved. 

The latest research on this type of approach strives to solve the above three 
aspects. Once tackled effectively, this type of approach can shine. Furthermore, 
none of the adversarial perturbation-based method has yet emerged to provide 
theoretically guaranteed protection. 

3.1.4 Deep Generative Model-Based Methods 

Different from the characteristics of most adversarial perturbation-based methods 
that they are only effective when facing the specifically trained recognition model, 
most of the methods in this subsection are also effective for face recognition systems 
that have never been seen during the training process, that is, they have good 
generalization ability. Built on deep generative models, these methods can achieve 
unprecedentedly excellent generation quality and privacy–utility tradeoff driven 
by large amounts of face image data. In addition, after well-trained, this type of 
model only needs one forward network processing to protect the identity of face 
image. So they are less time-consuming and can generate identity-protected face
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images whose visual quality is comparable to the corresponding original images. 
Deep generative model-based methods can be further divided into three categories: 
attribute manipulation-based methods, conditional inpainting-based methods, and 
identity representation manipulation-based methods. Below we will give a detailed 
introduction to these three subcategories of methods. 

3.1.4.1 Attribute Manipulation-Based Methods 

Face attribute manuscript, also known as face attribute editing or face retouching, 
refers to modifying the value of one or more attributes of the face, such as hair 
color, hairstyle, skin tone, gender, age, whether to smile, add glasses, hats, etc., 
while other attributes remain unchanged. The required modifications are generally 
provided in the form of attribute vectors or driving images, and the entire operation 
process is usually carried out through GANs. For instance, StarGAN proposed in 
[76], L2M-GAN proposed in [77], and S2FGAN proposed in [78]. Because there 
are attributes in all facial attributes that can affect the identity to a greater or lesser 
extent, changing several facial attributes has the potential to cumulatively modify 
true identity information. At present, some research uses existing or specially 
constructed facial attribute manipulation models to achieve de-identification by 
designing algorithms for manipulating face attributes. 

Mosaddegh et al. [79] use direct replacement. They first collect a set of face 
datasets from donors and then design an optimization strategy to substitute various 
components (eyes, nose, chin, cheeks, etc.) of the face whose identity needs to be 
protected with the corresponding facial components of the donors to remove the real 
identity. In this way, the automatic face recognizer is fooled, while the appearance 
of the generated face can be as close as possible to the original face. 

Li et al. [80] propose the AnonymousNet framework to provide identity pro-
tection for images in face datasets. The framework encompasses four stages: 
facial attribute estimation, privacy-metric-oriented face obfuscation, directed natural 
identity privacy-preserving face synthesis, and adding adversarial perturbation. 
Specifically, in the second stage, the authors design a Privacy-Preserving Attribute 
Selection (PPAS) algorithm to select and update all 40 facial attributes, changing 
the identity while making the distribution of any attribute close to the true statistical 
distribution of the attributes in the dataset. AnonymousNet is able to generate natural 
images with forged identities, and its de-identification result is guaranteed by the t-
closeness privacy theory [81]. 

Pan et al. [82] introduce a reversible face image identity protection framework 
based on conditional encoder and decoder framework and name it multifactor 
modifier (MfM). This framework consists of a style encoder, a content encoder, 
and one decoder. Users only need to select the input image that provides a 
reference style, set the password, and choose the desired multifactor combination 
to get the identity-protected image that removes the real identity and meets the 
user’s requirements for attribute. Besides, when the correct password and selected 
multifactor combination are given, the original face can be restored. It is worth
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noting that when designing the multifactor attribute requirements, the authors divide 
facial attributes into identity-related facial attributes (such as gender, age, facial 
expression, etc.) and identity-independent facial attributes (such as hairstyle and 
skin color, etc.), which are processed separately. 

Zhai et al. [83] believe that the face identity is a high-level semantic representa-
tion determined by a combination of specific face attributes, so it can be changed 
by manipulating face attributes. They propose an attribute-aware anonymization 
network (A. 3GAN), which first uses a multiscale semantic suppression network 
with a creative suppressive convolution unit to gradually remove face identity 
along multilevel deep features. Then the attribute-aware injective network (AINet) 
generates various attributes in a controllable manner and injects them into the 
latent space code of the original face. Finally, the decoder produces realistic and 
high quality faces. This method maintains original image quality while protecting 
identity privacy and allows for more fine-grained control over the de-identification 
process. However, the result is very unlike the original image. 

In summary, attribute manipulation-based methods have relatively mature data 
with attribute labels for training, and there are also popular face attribute editing 
methods that can be used for reference, so the research foundation is excellent. The 
most critical part of designing this type of methods is to design specific algorithms 
for manipulating attributes, so as to ensure that identity privacy is protected while 
minimizing the impact on the utility of the image. However, there is a very serious 
problem with this kind of method, that is, from a common sense perspective, except 
for age, gender, race, and a few other attributes that affect the whole face and are 
strongly related to identity, most of the rest of facial attributes are considered to 
be irrelevant or weakly related to identity, including hairstyle, skin color, whether 
to smile, eyebrows shade, and so on. And manipulating attributes that are strongly 
related to identity will greatly affect the utility of the image, especially the similarity 
with the original face. Therefore, even this type of method ensures that identity 
is protected, it has a high probability of affecting other nonidentity features of 
the image, and it is difficult to be as similar as possible to the original image. 
Last but not the least, changes in facial attributes will also prevent subsequent 
identity-independent computer vision applications of facial analysis from being 
used normally. 

This book believes that the application scenarios of attribute manipulation-based 
methods are very limited. For them, identity protection algorithms for attribute 
editing and retention are customized for specific application scenarios, quantitative 
analysis of the impact of face attribute editing on face identity, and the introduction 
of other new means (such as homomorphism encryption) to solve the problem of 
privacy–utility tradeoff may be the future directions. 

3.1.4.2 Conditional Inpainting-Based Methods 

A missing/damaged portion/area of an image is a set of unconnected pixels 
surrounded by a set of known adjacent pixels. Face inpainting refers to the method
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of using known information to fill or reconstruct the missing/damaged areas of the 
face image [84]. As for face images, identity information is concentrated in the facial 
area, this can be proved by the fact that the current face recognition systems require 
face detection first, thereby framing the face area and then performing subsequent 
operations only on the detected area. Therefore, if the privacy-sensitive face area 
(the entire face area including hair and part of the upper body, or demarcated facial 
area including the five senses and skin by a segmentation algorithm) is removed to 
ensure that the real identity information is hidden, then the conditional Generative 
Adversarial Network (cGAN) is designed to inpaint the whole face based on 
well-designed “conditions,” such as the keypoints, edge contours, image statistical 
indicators of the removed area, etc., so that the completed face has good utility. This 
is a very persuasive idea to realize the face de-identification. 

Sun et al. [85] propose a two-stage face image de-identification method based 
on conditional inpainting. The first stage is responsible for obtaining 68 facial 
keypoints of the original face image. If the input image contains the original face 
region, facial landmarks are detected using the python dlib toolbox, whereas if the 
original face region is obscured, facial landmarks are generated using a trained 
landmark generator. In the second stage, the original face image is blacked out 
or blurred, and the facial landmarks obtained in the first stage are used to inpaint 
the face using cGAN. The head-inpainted images can mislead machine recognizers 
while looking realistic. 

The reference [86] proposes a DeepPrivacy method. This method first detects the 
face and performs sparse pose estimation on the face to obtain 7 facial keypoints, 
including ears, eyes, nose, and shoulders. Then DeepPrivacy normalizes the pixel 
values of the image area within the detection bounding box to .[−1, 1]. Finally, 
this method uses a trained cGAN to generate the final face based on the above 
sparse pose estimation. DeepPrivacy ensures 100% removal of privacy-sensitive 
information in the original face because the model does not touch the face area 
at all, while keeping the face expressions and movements of the original image 
basically unchanged. However, the appearance of the generated image will change 
significantly when compared with the original image. 

Qiu et al. [87] first remove the identity information of the face image to be 
protected through four different measures (black rectangle covering human eyes, 
face cartoonization, adding Laplace noise, and mosaic) and then use a multi-input 
generative model based on Variational Autoencoder to fuse these de-identified 
images to reconstruct realistic images and ensure utility. However, the image 
generated by this method does not resemble the original image. 

Kuang et al. [88] propose a face image de-identification method called DeI-
dGAN, which can synthesize diverse faces by using the desired shapes and 
styles. The face image is explicitly obfuscated before being input into DeIdGAN. 
During the generation process, the semantic segmentation map, the front and the 
background segmentation map are input as conditions; a facial image of another 
identity is selected to provide the style reference. The face generated by DeIdGAN is 
very different from the original face and has good identity protection performance.
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However, in terms of utility preservation, DeIdGAN can only guarantee semantic 
similarity with the original face, and the nonidentity attributes often change. 

In summary, since conditional inpainting-based methods directly remove the 
facial area, the trained model can only access limited conditional information from 
the original face, so this type of method can often do an outstanding job in protecting 
identity information. However, precisely because of this reason, the original image 
information that can provide guidance for the inpainting process of the missing area 
is very limited. The generated identity-protected face usually can only ensure that 
the inpainted area is seamlessly connected with the adjacent pixels, the overall view 
looks real, and the information from the original image as the “condition” is as 
similar as possible to the original image. But there is no guarantee that the remaining 
nonidentity features are still the same as the original image, let alone the appearance 
is similar to the original face. Therefore, conditional inpainting-based methods are 
only suitable for situations where privacy and utility of specified parts are highly 
required. 

3.1.4.3 Identity Representation Manipulation-Based Methods 

Protecting the identity while changing the original face as little as possible is 
the goal constantly pursued by the face de-identification research. However, no 
matter the attribute manipulation-based methods or the conditional inpainting-
based methods, the current effect cannot achieve this goal. In fact, these two 
types of methods are powerless in preserving original appearance by their own 
implementation ideas, i.e., manipulating and transforming facial attributes and 
inpainting faces according to partial facial information. Therefore, even if there 
are new developments in the future, it will be difficult for them to remove identity 
information without affecting the nonidentity features of the original face at the 
same time. 

In order to solve this important problem, researchers of face de-identification 
refer to the research on face recognition and find a novel and effective idea. As we 
all know, the face recognition system is usually composed of three parts. The first 
is the face detection and preprocessing, which is responsible for detecting facial 
regions and performing face alignment. The second is the identity representation 
learning, which is responsible for extracting discriminative features from aligned 
face images through trained deep networks. Finally, the similarity scores of the 
features are calculated, and the face’s identity is determined according to a well-
designed matching algorithm [89]. It can be found that the identity representation 
can be used as a representative to determine personal identity, which is the core 
of face recognition. Therefore, if a similar face identity representation is obtained 
in the face de-identification task, targeted operations such as obfuscation, hiding, 
and replacement can be designed according to its detailed representation form, 
while (or subsequently) focusing on retaining the utility content such as image 
quality and facial nonidentity features. By designing a wide variety of utility 
assurance operations, identity protection can be achieved while affecting other facial
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characteristics as little as possible. This idea theoretically guarantees the feasibility 
of a good privacy–utility tradeoff. The key to the research lies in how to design 
identity representation, perform identity representation learning, and train a deep 
generation network for high quality face reconstruction. 

Most studies design deep networks to achieve face feature disentanglement in 
the latent space, striving to apply protection measures only to identity features, 
so as not to affect other face attributes. Among them, Meden et al. [90] replace 
the original face with an artificial surrogate face generated by a small number of 
identities. After detecting the face area, they first use the deep face recognition 
model [91] to calculate the feature vector. Then they match it with the fixed face 
database of M subjects and select the k closest identities (k . � M), which are then 
fed to the deep generative network (DGN) to synthesize realistic artificial surrogate 
face with the visual features of the selected k identities. Finally, de-identification 
can be achieved by blending the surrogate faces into the input frames. In particular, 
the generation process of the surrogate face is controlled by a small number of 
appearance-related parameters, such as posture, skin color, gender, expression, etc. 
By setting these parameters, users can obtain artificial faces with customizable 
nonidentity features. Chen et al. [92] propose a model, PPRL-VGAN, that combines 
VAE with GAN. PPRL-VGAN can explicitly separate identity representation from 
other image representations in the latent space. After a face is input, its identity 
representation is replaced by the identity code of the target identity, while other 
image representations especially the expression information of the original image 
are retained. At last, a de-identified face image is synthesized with the original 
expression maintained. 

Later, Nousi et al. [93] use deep autoencoders to achieve face identity protection. 
They first design various methods to fine-tune the encoder part of the standard 
autoencoder and then forward-passed face images to the modified encoder. This 
encoder can change the identity in the latent space while preserving other attributes. 
All other information is then passed to the decoder to reconstruct the new face. 
The generated face changes the original identity but retains other attributes of the 
original face; however, it is visually different from the original ones. In addition, 
Guo et al. [94] present an encoder to map the input face image into a vector in the 
identity feature space. Then they introduce a large-margin model for the synthesized 
new identities by keeping a safe distance between the generated identity with both 
the input identity and existing identities. The generation of de-identified face images 
is finally completed with certain utility through the trained GAN. 

It has been found that sometimes there are gaps between the generated facial area 
and the background, and some studies have designed methods that can harmoniously 
blend the identity-protected face with the background. Gong et al. [95] propose 
a face de-identification method that can preserve multiple attributes. They first 
establish a twofold chained architecture called replacing and restoring variational 
autoencoders (R. 2VAEs) to disentangle identity-related and identity-independent 
features in the latent space. Then they employ two feature obfuscation strategies 
to replace the original identity-related feature for synthesizing a de-identified face. 
At this time, if the identity-protected face is used to directly replace the original
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face, color differences between the face area and the surrounding area in the image 
will be caused. Therefore, the authors use de-identified faces as prior information 
to guide a GAN-based network to fill the original face region, so as to generate 
de-identified faces with reasonable semantics and realistic features. Kuang et al. 
[96] design an end-to-end network that relies on the Face Region Loss to achieve 
identity protection. Specifically, the loss includes a pixel-level loss that constrains 
the input and output faces to be close to a certain empirical value, a variance loss 
that stabilizes training, and a perception feature loss that penalizes the original and 
generated faces if they are close to each other in a certain feature space by using 
the output of the encoder of the U-Net network [97]. Additionally, the network has 
losses for background regions and conditional inputs, which together with the Face 
Region Loss train the network to seamlessly replace faces in input images with 
synthetic faces. The synthetic face will not be correctly recognized and will look 
realistic and natural. However, the only drawback is that the de-identified result will 
have a completely different appearance than the original face. 

Later, Maximov et al. propose the SOTA model at that time, CIAGAN [98]. 
CIAGAN trains a generator network with an encoder–decoder structure in an 
adversarial manner. It first takes the landmark information of the original face and 
the image excluding the face area as input and encodes it into a low-dimensional 
space. Then it represents the randomly selected reference identity in the real face 
dataset as a one-hot vector and inputs it into the bottleneck layer of the network. 
In an adversarial game with an identity-guided discriminator in a standard GAN-
setting, CIAGAN removes identity information from original faces and bodies while 
generating high quality images that can be used for identity-independent CV tasks. 
It can be seen that the identity of the generated image is a composition of both the 
identity hidden in the input face landmarks and the desired reference identity. The 
same team later proposes a method to separate the de-identification problem into de-
identified image generation and image blending and trains an AnonymizationNet 
and a HarmonizationNet to implement them separately [99]. For any given input 
image, the AnonymizationNet randomly selects a control identity parameterized by 
a one-hot vector and mixes it with the original identity so as to create a new unknown 
identity. Then the HarmonizationNet blends the generated face in order to naturally 
fit with the background and overall illumination. Yang et al. [100] use the SimSwap 
face swapping framework [101] to exchange the identity of the face to be protected 
with another real face, while not changing other biological attributes of the face to 
be protected. The resulting face is improved by super-resolution reconstruction and 
generates the high-definition mask face. The authors then design two modules, the 
Putting on Mask Face architecture and the Putting off Mask Face architecture, that 
can protect the original face and losslessly recover the original face by authorized 
users. 

In particular, some researchers will borrow existing high accuracy face recogni-
tion models and use their output as face identity representation. They are thus able 
to not worry about designing the data form of identity representation. The research 
focus is on training DGN to achieve latent space disentanglement and the generation 
of high quality images.
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Wu et al. [102] propose the PP-GAN, a model that inputs the original image 
and the generated image into the face recognition network FaceNet and extracts 
the output features after a certain embedding layer as the identity representative of 
the two images. PP-GAN then calculates the . L2 distance between the two identity 
representatives as contrastive loss to help remove the real identity information of 
the original face and create a new identity, so as to achieve the purpose of de-
identification. In addition, they design a regulator to maintain image utility as 
measured by the Structural Similarity Index Measure (SSIM) loss. By designing 
two types of loss functions that are responsible for identity protection and utility 
maintenance of the original image, the network can better balance the privacy and 
utility. 

This design pattern inspires a number of subsequent studies. For example, Lin 
et al. [103] present identity content loss, adversarial loss, and pixel loss, which 
provide an easier-to-train and more stable face de-identification model for social 
robot platforms; Khojasteh et al. [104] design de-identification loss and perceptual 
loss and use the StyleGAN model [105] as a generation backbone to produce high 
quality de-identified images without any noticeable distortion; Zhao et al. [106] 
propose identity-level loss, pixel-level loss, and perceptual-level loss. The weighted 
sum loss function is used to train a generator based on the StyleGAN2 model [107], 
which is very effective against face recognition systems. 

Furthermore, the network proposed by Cho et al. [108] adopts a VAE with 
encoder–decoder structure to learn an organized latent space. They use a trained face 
recognition model [109] to generate guided identity representation, which enables 
the feature vector produced by the encoder to be divided into identity-related parts 
and attributes-related parts. This disentangled latent space then allows the identity 
information to be modified solely of other attributes, and finally, the decoder can 
effectively generate a natural face with completely new identity, while the other 
attributes that are loosely related to personal identity are preserved. However, this 
framework produces images of average quality. Luo et al. [110] also design a 
VAE-based projector that encodes the identity priors from the face recognition 
model CurricularFace [111] as a latent variable. Afterward, the authors define 
the projected identity as the output style and design a carefully devised Adaptive 
Attribute Extractor to represent the extracted identity-irrelevant attributes as noise 
input and used the StyleGAN2 model as the generator to improve the quality of 
face de-identification on megapixels. Cheng et al. [112] train four models that 
are GoogleNet [113], ResNet50 [109], VGG16 [114], and DenseNet121 [115] 
to conduct identity, facial expression, gender, and ethnicity, respectively. Then, 
both Autoencoder (AE) and GANs approaches can be used to change the identity 
while keeping the other three attributes unchanged, which provides identity privacy 
protection for 2D and 3D face images. 

Some works have achieved reversible face de-identification. Gu et al. [116] 
obtain a reversible face identity transformer using discrete passwords by optimizing 
a multitask learning objective function. They define the feature of the face image 
extracted by a pretrained face recognition model SphereFace [117] as the identity of 
this face image. During the optimization process, the authors maximize the feature-
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level dissimilarity between pairs of de-identified faces that have different passwords, 
and fooling a face classifier, they also maximize the feature dissimilarity between 
a de-identified face and its identity-recovered face with a wrong password so that 
the identity always changes. The identity transformer can set a password to protect 
identity and restore the original face only when the correct password is given. 

In addition, some researchers believe that the latent space feature disentangle-
ment cannot be well explained at present. At the same time, the way to model 
the shape and texture of face images in 3D monocular face reconstruction research 
is both clear and well explainable. Therefore, it is a reasonable idea to first adopt 
3D priors to model face identity parameters and then use the powerful generation 
capabilities of DGN to generate photo-realistic output. Sun et al. [118] propose a 
hybrid model, including a face parametric model and a data-driven GAN model. 
They first use a 3DMM model to perform parametric modelling of the face. 
After obtaining the semantic parameters of all training set images, they cluster all 
identity parameters into 15 different identity clusters. Then the distance between 
the input face and the identity parameters of these 15 clusters will be calculated, 
and the identity parameters of the input face will be explicitly replaced by the 
identity parameters of the training set cluster closest to the specified distance. At 
last, the authors use a GAN to add fine-grained details to the identity-protected 
rendered faces, improving the overall realism and seamlessly integrating it with the 
background. 

In summary, identity representation manipulation-based method is the best 
method in terms of comprehensive performance in the current research on face 
image de-identification and is also the mainstream method based on DGN. The main 
reason is that this kind of methods possesses the following two advantages: 

• Whether it is using DNN to learn face identity representation, or relying 
on parametric face modelling to obtain face identity representation, as long 
as the disentangled face representation is obtained, the researchers can only 
investigate how to protect this representation. Each research scheme shows 
its own remarkable processing methods. It can directly perform obfuscation 
operation on the identity representation, or it can design diverse loss functions 
to make the identity representation far away from the original one. It can be seen 
that this kind of face de-identification methods is accurate and efficient. 

• The excellent performance of DGN in generating high quality face images shows 
that it is possible to use DGN to turn protected facial identity representation into 
photo-realistic images with outstanding utility performance. 

These two advantages also point out the three research focuses of identity 
representation manipulation-based methods in the future. To be specific, that is, 
how to design and obtain a thoroughly disentangled face identity representation, 
how to protect the face identity representation, and how to design as well as train 
a DGN with satisfactory image generation quality. In addition, it will become 
a future trend to give this type of methods more additional functions, such as 
not relying on real identity assistance during the identity manipulation process, 
a reversible de-identification process under certain given conditions [142], the
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face image de-identification 
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attribute manipulation-
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Fig. 3.1 Taxonomy of existing face image de-identification techniques. The proposed taxonomy 
partitions face de-identification technologies into obfuscation-based methods, k-Same algorithm 
based methods, adversarial perturbation-based methods, and deep generative model-based meth-
ods. The last type can be further divided into three categories: attribute manipulation-based 
methods, conditional inpainting-based methods, and identity representation manipulation-based 
methods 

diversity of generated results, the adjustability of the degree of de-identification, 
the interpretability as well as the theoretical support of the proposed method, etc. 
Researchers are working hard to provide excellent, rigorous, and comprehensive 
solutions for identity privacy protection. 

In particular, since DGN has the ability to encode face images into features 
in the latent space, it becomes possible to combine DGN with the classic DP 
theory designed for traditional databases. This has been a promising research 
direction, and there are currently some methods [119–123] that provide privacy 
protection guaranteed by DP theory for face images. These methods benefit from 
the generation ability of DGN, which often results in striking visual effects. Our 
algorithm classification summary of current face image identity privacy protection 
research can be seen in Fig. 3.1. 

3.2 Face Video De-identification 

Different from surveillance videos that contain a large amount of scene information, 
face videos refer to videos shot with human faces or heads as the main subject, such 
as vlogs, live-streaming sales, speeches, and interviews. The face video may contain 
a small part of the upper body, and the background may be a pure color background 
plate or a complex natural scene. In recent years, face video has become very 
popular on the Internet media, and the number of its creations has increased rapidly. 
Therefore, the corresponding research on its identity protection is also flourishing. 
These studies can be divided into two categories, i.e., methods of applying image de-
identification methods to videos and methods designed specifically for videos, based 
on whether they are designed and trained for face videos alone. We will introduce 
them below separately.
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3.2.1 Methods of Applying Image De-identification Methods to 
Videos 

For the methods that directly apply face image de-identification methods to videos, 
we further classify them into two categories: methods of applying image method 
frame by frame and methods of adding smooth transition measures between frames. 

3.2.1.1 Methods of Applying Image Method Frame by Frame 

Previously, a considerable number of researchers regarded video as a combination 
of multiple frames of images. Hence after designing de-identification method for 
face images, they will state in the corresponding thesis that this method can also be 
directly applied to face videos. More specifically, they process each video frame as 
a separate face image, such as the literature [3, 8, 9, 12, 14, 30, 70, 79, 87, 92, 108]. 
However, this processing idea ignores the unique data characteristics of video. It is 
worth noticing that there is a close temporal correlation between adjacent frames of 
face video, and the faces in each frame usually have much more abundant postures 
and expressions than the general image dataset. As a result, de-identified videos 
generated through the methods of applying image method frame by frame tend to 
be of very poor quality. 

3.2.1.2 Methods of Adding Smooth Transition Measures Between Frames 

Some other researchers also agree with the previous point of view, but they add some 
measures to facilitate smooth transitions between frames when transferring face 
de-identification methods designed for images to videos. For example, the method 
based on identity representation manipulation by Meden et al. [90] is also applicable 
to face videos. They first process each video frame as an image (see Sect. 3.1.4.3 for 
details) and then complete two postprocessing tasks. The first is to detect facial 
landmarks in the generated face and the original input face frame and then use both 
sets of landmarks to estimate a perspective transformation that warp the artificially 
generated face to align with the original face. The second is to perform simple 
skin color segmentation by using the upper and lower boundaries in the HSV color 
space that define the skin intensities, ensuring that most of the background around 
the generated facial areas is removed, while only remaining facial areas without 
the gray-colored background. Finally, the authors blend the warped and segmented 
synthetic face image with the original image by performing a Gaussian kernel mask. 

Additionally, the CIAGAN model [98] proposed by Maximov et al. will first 
process each video frame as a separate image (see Sect. 3.1.4.3 for details). Then 
a spline interpolation is used to smooth the face landmarks of each frame between 
neighboring frames. Finally the temporal consistency of the generated video frames 
is ensured through a SOTA video translation model with low computational cost.
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Another face image de-identification method [99] later proposed by the same team 
also uses a similar processing approach. After processing each video frame as an 
image (see Sect. 3.1.4.3 for details), in order to improve the temporal consistency 
of the video sequence, the authors transform the HarmonizationNet into a frame 
recurrent network by concatenating the output of the previous frame to the input of 
the current frame and replacing a spatial discriminator with a temporal one. When 
processing a video, the temporal discriminator [124] takes three consecutive frames 
as input and judges temporal smoothness and visual quality. Such simple changes to 
the HarmonizationNet are experimentally proven to be effective in reducing color 
jitter in the final results. 

In summary, when transferring face de-identification methods designed for 
images to video, this type of methods adopts a more thoughtful approach by 
adding operations that are conducive to maintaining video temporal consistency than 
directly treating the video as a collection of multiframe separate images. The visual 
effect of the resulting video will be better, without excessive shaking and flickering. 
However, in fact, the face image domain and the face video domain are collections 
of two different forms of data, and there is a certain domain gap between them. 
Therefore, the effect of the above methods (no matter the methods of applying image 
method frame by frame or the methods of adding smooth transition between frames) 
is always not ideal. Researchers should design special de-identification solutions for 
face videos. 

3.2.2 Methods Designed Specifically for Videos 

At present, most of the de-identification methods designed specifically for face 
video are based on manipulating identity representation assisted by DNNs, and a 
few are based on obfuscation. 

3.2.2.1 Methods Based on Manipulating Identity Representation 

This type of methods is based on the same understanding that is obtained through 
the investigation of deep face recognition research, that is, DNNs can extract 
disentangled face identity representation in a certain designed latent space, as the 
face image de-identification methods based on identity representation manipulation 
in Sect. 3.1.4.3. The video de-identification methods based on manipulating identity 
representation aim to utilize DNNs to obtain face identity representation and then 
design targeted obfuscation, hiding, replacement, and other operations according to 
the representation form. At the same time (or subsequently), they design operations 
that can maintain utility. Depending on whether the assistance of other real identities 
is required when generating a new identity, these methods can be further divided into 
methods based on real identity assistance and methods based on original identity 
modification.



44 3 Overview of Face De-identification Techniques

(1) Methods based on real identity assistance 
The method based on real identity assistance refers to replacing the identity 
of the input face video with a real personal identity of an authorized donor. 
This type of methods is simple and effective. The way of replacement here can 
be a direct exchange of two identity representations, or it can be a hybrid of 
two identity representations into a new mixed identity through various means. 
Generally speaking, the latter is a more thorough way of protecting facial 
identity privacy. 
Zhu et al. [125] directly use the face swapping technique, Faceswap.1 They 
conduct targeted training for Faceswap on the medical video dataset of patients 
with Parkinson’s disease, providing identity protection for patients while liber-
ating the sharing of clinical video materials. Specifically, during the training 
process, the authors explicitly exchange the face in the open-source dataset 
with the patient’s face so as to protect the patient’s identity, while keeping the 
keypoints unchanged to ensure that the subsequent disease assessment (the face 
of the patient is a clinical manifestation of movement disorders) and medical 
analysis can still be conducted according to the de-identified face. However, 
such a direct face swapping operation will lead to an extreme deterioration of 
visual similarity, and most nonidentity attributes except for facial keypoints of 
the result will be different from the original input. Therefore, a series of methods 
that can better preserve nonidentity features in the de-identification process have 
been proposed. 
Samarzija et al. [126] first train several AAMs to capture and synthesize specific 
face poses. Then by fitting each model to the input face, they select the best 
fitting model and determine the face poses and face regions. Finally, the face 
region is swapped with another face that is extracted from the training dataset 
used to build the chosen best fitting model. Since this identity exchange takes 
poses into account, it makes the generated de-identified videos more natural. 
Li et al. [127] treat the nonidentity facial attributes as the style of the original 
face, and they use a trained DNN model, Facial Attribute Transfer Model 
(FATM), to map nonidentity-related facial attributes to the face of donors. The 
donors here are several (usually 2–3) real humans who agree to authorize the 
identity. Using real faces to receive identity-independent features of the face to 
be protected can ensure that the synthetic face is realistic and natural. Besides, 
FTAM blends the donors’ facial attributes to those of the original faces to 
diversify the appearance of the synthesized faces. 
Gafni et al. [128] propose a feed-forward encoder–decoder network architecture 
that concatenate the activations of the face-classifier representation layer [109] 
to the latent space of the network’s bottleneck. During the training process, the 
authors design a number of loss functions, including a new attractor–repeller 
perceptual term, to complete identity-distancing while maintaining pixel-space 
similarity. Meanwhile, a multilevel face descriptor is used to describe identity

1 https://github.com/deepfakes/faceswap 

https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
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(high-level) and nonidentity features (low or mid-level), respectively. The 
encoder–decoder network outputs an image and a mask simultaneously, with an 
extracted transformation matrix by using an estimated similarity transformation 
(scale, rotation, and translation) to an averaged face. The final output frames are 
generated by linearly mixing the input video frame and the output image per 
pixel according to the weight of the transformed mask. 

(2) Methods based on original identity modification 
Although methods based on real identity assistance have developed to a stage 
where the protection effect of identity privacy is quite amazing, the generation 
process requires other real identity assistance, and the new identity in the 
generated video is (or is mixed with) the identity of one or more existing 
authorizers. Both of which will make it difficult to apply these methods under 
increasingly stringent laws and regulations. For example, GDPR stipulates 
that application providers must periodically obtain the consent of objects who 
have authorized their identity so as to continue using their identities. So once 
the authorizer changes his or her mind, the network may need to be fine-
tuned, and the previous identity-protected facial video may face the crisis of 
no longer being used, which is very inconvenient. Therefore, the pattern of 
extracting disentangled facial identity representation and designing means to 
make it changed by training a DNN becomes increasingly welcome. We call 
the method that adopts this pattern “the methods based on original identity 
modification.” Once the identity representation is disentangled from other face 
attributes, researchers can take steps to eliminate, reduce, or obfuscate the 
identity representation until the original face identity changes. Simultaneously 
(or subsequently), researchers can generate realistic face videos based on the 
new identity representation. During this process, a new virtual identity is born, 
and no other real identities are required to participate. 
Gross et al. [129] describe a framework using multifactor models that unify lin-
ear, bilinear, and quadratic data models. They first use the generative multifactor 
model to factorize the input image into identity and nonidentity components. 
Then a de-identification algorithm is applied on the combined factorized 
data. Finally, the bases of the multifactor model are used to reconstruct de-
identified images. Experiments on medical record videos after shoulder surgery 
demonstrate that this approach can protect identity privacy while preserving 
many of the data utility. 
With the rapid development of deep learning, the superb representation learning 
ability of DNN makes it unique in the face representation disentanglement task. 
Besides, the ability of DGN to generate high quality images has also aroused 
the interest of researchers. Ren et al. [130] train two competing systems in 
an adversarial training setting, that is, a video anonymizer that modifies the 
original video to remove identity information while still trying to maximize 
spatial action detection performance, and a discriminator that tries to extract 
identity information from the de-identified videos. The video anonymizer is 
trained to learn to disentangle identity representation and action representation. 
After adversarial training, it can modify the facial identity of the original
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video without affecting facial movements. Camera systems using this algorithm 
by designing an embedded chipset at the hardware level can still recognize 
important events and assist human daily lives by understanding its videos but 
do not invade personal privacy. 

In summary, the methods based on manipulating identity representation are 
the best comprehensive methods in the current researches on face video de-
identification. The corresponding reasons and research key are the same as the iden-
tity representation manipulation-based de-identification methods for face images 
(see Sect. 3.1.4.3 for details). In particular, in addition to the same three future 
research emphases (see Sect. 3.1.4.3 for details), this type of methods has to focus on 
two additional research keypoints: (1) algorithm design to adapt to rich expressions 
and postures and (2) algorithm design to save computational overhead. 

3.2.2.2 Methods Based on Obfuscation 

There are also a few methods that use obfuscation processing to de-identify face 
videos. This type of methods generally first employs algorithms to detect privacy-
sensitive areas in face videos. Then the detected areas will be confused either by 
designing an obfuscation algorithm or by using traditional methods such as blurring, 
pixelation, and color blocking. 

Xuan et al. [131] use large-capacity color watermark technology to embed 
watermark information containing facial privacy area features into the original 
image. Then they encrypt and decrypt the face area to update the image, thereby 
achieving efficient identity protection. Korshunov et al. [132] objectively assess 
five de-identification methods based on obfuscation in detail, namely blurring, 
pixelation, masking, warping [133], and morphing [134]. When different intensity 
parameters are selected, the authors investigate the impact on three face recognition 
algorithms in OpenCV. 

In summary, this type of methods protects identity privacy while seriously 
damaging the data utility of the video; however, the calculation is simple. Therefore, 
it is suitable for situations where real-time playback is required, or platform 
resources are limited (such as embedded devices). Our algorithm classification 
summary of current face video de-identification research can be seen in Fig. 3.2. 

3.3 Evaluation Metrics 

In this section, we will introduce the evaluation indicators used to measure the 
performance of the face de-identification algorithm. Unfortunately, there are not yet 
universally acknowledged evaluation criteria at present, so we sort out the evaluation 
indicators used in existing papers and present the definition or explanation of the 
metrics. We divide common evaluation metrics into two categories: the metrics that
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face video de-identification 

techniques taxonomy 

methods of applying image de-identification 

methods to videos 

methods designed specifically 

for videos 

methods based on manipulating 

identity representation 

methods based on original 

identity modification 

methods based on 

obfuscation 

methods of applying image 

method frame by frame 

methods of adding smooth transition 

between frames 

methods based on real 

identity assistance 

Fig. 3.2 Taxonomy of existing face video de-identification techniques. The proposed taxonomy 
partitions face de-identification technologies into methods of applying image de-identification 
methods to videos and methods designed specifically for videos. The former can be further divided 
into two categories: methods of applying image method frame by frame and methods of adding 
smooth transition between frames, while the latter can also be further divided into two categories: 
methods based on manipulating identity representation and methods based on obfuscation. The 
methods based on manipulating identity representation are subdivided into two classes: methods 
based on real identity assistance and methods based on original identity modification 

evaluate the privacy performance of the algorithm and the metrics that evaluate the 
utility performance of the algorithm. We will introduce them respectively below. It 
is worth noting that these indicators are calculated on face images. When evaluating 
face videos, we calculate the de-identified video against the original video frame by 
frame. 

3.3.1 Privacy Protection 

• Identity Distance: Almost all face verification models judge whether two images 
have the same identity by comparing identity embedding distance, so we use the 
distance between identity vectors eid extracted from the face recognition model, 
which can be formulated as 

.Id-dis = Dis(eid(X), eid(F(X))). (3.1) 

Here Id-dis denotes the identity distance, X indicates the original image, 
and F(X) represents the de-identification result. The specific form of Dis is 
determined by the face recognition model used to obtain identity embedding eid , 
and L2 distance and cosine similarity are two general measurement functions for 
calculating the distance. 

• Successful De-identification Rate: In face verification, when identity distance 
exceeds the reference threshold given by the model, it is considered that the 
identities of two images are different. If the identity of the de-identification result 
is different from the original, it is defined to be a successful de-identification. 
Therefore, we compare identity distance with the corresponding threshold to fur-
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ther calculate the ratio of successful de-identification, which can be formulated 
as 

.SDR = 1 − 1

N

N∑

i=1

fver (X,F(X)), (3.2) 

where SDR indicates the successful de-identification rate, fver = 0 when Id-
dis> τ , otherwise fver = 1, and N is the number of testing. 

3.3.2 Utility Preservation 

3.3.2.1 General Utility 

• Face detectability: The most important point for data utility is that the generated 
images should look natural and realistic. This can be quantified by evaluating 
to what extent de-identified faces could be detected by face detectors. Two 
options are possible to achieve this target: (1) face detection rate (%), i.e., the 
proportion of de-identified faces that can be detected by a face detector; (2) face 
detectors like [135] that provide a confidence score for detecting a face, i.e., 
face detectability could be directly evaluated by comparing the face detection 
scores obtained for the raw and de-identified elements; alternatively, we could 
also compare softmax probabilities that the face recognition network produces. 

• Landmark distance: The localization of face regions and keypoints is a common 
processing in face modification and other operations, so it is desirable that the 
deviation of landmarks at pixel level will not be affected in the process of face 
de-identification. 

• Peak signal-to-noise ratio (PSNR): 

.PSNR = 10 log10

(
MAX2

MSE

)
, (3.3) 

where MAX is the maximum possible pixel value of the image and MSE means 
the mean squared error between two images I and K with the resolution of m×n, 
calculated by MSE = 1 

mn

∑m−1 
i=0

∑n−1 
j=0[I (i,  j) − K(i, j)]2. 

• Structural similarity (SSIM): We want to maintain similarity between the original 
image and the de-identified image rather than just replace the face area randomly. 
In other words, we only want to remove the privacy-related characteristics, but 
keep the visual similarity, i.e., contours and luminous condition. The structural 
similarity (SSIM) is defined as follows: 

.SSIM = l(X,D(X))α · c(X,D(X))β · s(X,D(X)))σ , (3.4)
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where l(X, D(X)), c(X, D(X)), and s(X, D(X)) denote, respectively, brightness 
similarity, contrast similarity, and structural similarity, and α, β, γ their weight-
ing coefficients, usually set to 1. It should be noticed that both PSNR and SSIM 
just focus on objective image quality evaluation and fail to capture many nuances 
of human perception [136]. 

• Fréchet Inception Distance (FID) [137]: FID is used to measure the distance 
between the distribution of real images and synthesized images. It is a metric 
that compares the visual quality of generated samples to real ones. The lower 
the FID, the better, corresponding to more similar real and generated samples. 
Wang et al. [138] proposed a variant of FID for video evaluation, which measures 
both visual quality and temporal consistency. Specifically, they infer a video 
recognition network after removing its last few layers and consider this feature 
extractor as the “inception” network. For each video, a spatio-temporal feature 
map is obtained by feature extractor, and then means and covariance matrices are 
computed for the feature vectors from real and synthesized videos. 

• Learned Perceptual Image Patch Similarity (LPIPS) [136]: The LPIPS Distance, 
also known as perceptual loss, is used to measure the similarity between two 
images based on deep features. This metric was proposed to learn the inverse 
mapping of generated images to ground truth and prioritize the perceptual 
similarity between them. It has been demonstrated to correlate better with human 
perceptual similarity than traditional metrics (such as MSE/PSNR, SSIM, FSIM). 
The lower the value of LPIPS, the more similar the two images are, and vice 
versa, the greater the difference. 

3.3.2.2 Customized Utility 

• Attribute preservation: To examine the performance of the proposed model 
for attribute preservation, we depend on separate attribute classifiers for each 
attribute to calculate the accuracy rate (%) of the preservation performance on 
some demographic attributes, like hair, gender, age, and skin. 

• Pose preservation: After de-identification processing, whether the pose of the 
resulting face is consistent with the original face is an important utility perfor-
mance, which is related to whether the nonidentity pose-related computer vision 
tasks can be used normally. Input the de-identified face X′ and the original face 
X into the same third-party pretrained face pose encoder Epose, and the distance 
between the two output pose feature vectors is used to measure the ability of pose 
retention. The specific calculation method of the distance here is determined by 
Epose used. 

• Expression preservation: After de-identification processing, whether the expres-
sion of the resulting face is consistent with the original face is also an important 
utility performance, which is related to whether the nonidentity expression-
related computer vision tasks can be used normally. Input the de-identified face 
X′ and the original face X into the same third-party pretrained face expression 
encoder Eexp, and the distance between the two output expression feature vectors
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is used to measure the ability of expression retention. The specific calculation 
method of the distance here is determined by Eexp used. Specially, according to 
the Facial Action Coding System (FACS) [139], Action Units (AUs) identify the 
fundamental muscle movements of the human face and can be considered as a 
proxy for the overall facial expressions. Bursic et al. [140] proposed to extract the 
AUs from the original and de-identified faces and then compute the root-mean-
square error (RMSE) averaged on all AUs. For video de-identification tasks, the 
Pearson’s Correlation Coefficient (PCC) is additionally computed to measure 
how well the AUs correlate on the temporal dimension. 

• Temporal Consistency: For video de-identification, preserving temporal consis-
tency is an essential metric for data utility. As mentioned above, the adapted FID 
metric could measure temporal consistency in synthesized videos. Meanwhile, 
empirically, the lack of temporal consistency can be observed as flickering and 
warping faces with changing identities. Thus in order to obtain a quantitative met-
ric for temporal coherence, Balaji et al. [141] introduced the Identity Invariance 
Score, identity distance between every two subsequent frames averaged over the 
entire sample, with the postulation of correlation between temporal coherence 
and invariance of altered identity. We note that this method could be generalized 
to evaluate temporal consistency in other attributes. 

In summary, the evaluation measures discussed in this subsection provide a 
thorough framework for assessing the performance of face de-identification algo-
rithms. By outlining metrics for both privacy protection and utility, this compilation 
addresses the dual goal of obscuring identities while keeping essential visual 
information. These metrics not only quantify how well identities are concealed 
but also measure the quality and naturalness of the de-identified faces, covering 
aspects like detectability, landmark consistency, perceptual similarity, and retaining 
attributes. Also, for video de-identification, the focus on maintaining coherence 
and consistency over time further improves the comprehensive evaluation of these 
algorithms. Together, these diverse metrics help advance the development of 
robust and effective face de-identification techniques that strike an optimal balance 
between protecting privacy and preserving usefulness. 
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Chapter 4 
Face Image Privacy Protection with 
Differential Private k-Anonymity 

4.1 Introduction 

The major challenge of face de-identification is the tradeoff between privacy 
and image utility. The ideal de-identification method should be able to control 
the balance to adapt to extensive applications. Most GAN-based methods fail to 
quantify this matter until Li et al. [1] proposed that facial privacy is measurable 
and provided a privacy preservation way with an attribute selection method based 
on privacy metrics such as k-anonymity [2], l-diversity [3], and t-closeness [4]. 
However, AnonymousNet modified facial attributes of protected image close to its 
real-world distribution without considering the control of image disturbance degree. 
We hope to add minor changes for better utility preservation with the condition of 
privacy protection. 

In this chapter, we propose a face image privacy protection method with 
differential private k-anonymity, including the following two key features: (1) it 
first finds the average face attributes of the k nearest neighbors of the given image 
and then edits it toward the direction of the average face, which can hide the identity 
while ensuring the modification is small. (2) Differential privacy (DP) is introduced 
to add randomness and provides further protection on top of the former because the 
first step is a deterministic process and limited in protection effectiveness. As the 
de-identification results shown in Fig. 4.1, our approach can generate the naturally 
realistic faces and keep similarity with the original images. 

Main contents of this chapter have been published in “Cao, J., Liu, B., Wen, Y., Zhu, Y., Xie, R., 
Song, L., . . .&  Yin,  Y.  (2022, June). Hiding among your neighbors: Face image privacy protection 
with differential private k-anonymity. In 2022 IEEE International Symposium on Broadband 
Multimedia Systems and Broadcasting (BMSB) (pp. 1–6). IEEE.” 
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Fig. 4.1 Qualitative comparison of various traditional and state-of-the-art (SOTA) de-
identification methods, where (a) input image, (b)–(d) are traditional methods including (b) blurred  
image, (c) adding Gaussian noise to the pixel, (d) pixelated image, and (e)–(g) are GAN-based 
methods including (e) DeepPrivacy [5], (f) CIAGAN [6], (g) AnonymousNet [1], and (h) de-
identified results by our approach. As can be seen from the figures, the proposed method results in 
more natural facial images and can retain some similarity with the original 

The major contributions of this chapter can be summarized in threefolds: 

1. We propose an image de-identification method to achieve metric privacy based 
on attributes indistinguishability. 

2. We design the differential private k-anonymity algorithm to select obfuscation 
attributes that can control the tradeoff between privacy and utility by adjustable 
parameters. 

3. We empirically evaluate our obfuscation method for both privacy and utility 
performance. We show our approach can achieve higher utility and more 
similarity with the original face while ensuring privacy protection. 

4.2 Related Works 

4.2.1 Privacy-Preserving Machine Learning 

The focus of privacy-preserving machine learning is how to prevent leaking 
sensitive information in both models and datasets. Plentiful researches are from 
the perspective of the target and stage of attacks, including membership inference 
[7], feature estimation [8], model-inversion attacks [9], etc. Differential private
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machine learning has been widely used in perturbation, which aims to train 
models with formal guarantees implemented by randomizing the training process 
such as adding noise to the gradient. The advanced interaction between differ-
ential privacy and machine learning has been discussed in [10]. Along with the 
advancement of collaborative learning, more researchers pay attention to privacy in 
the aggression process. A model-agnostic approach named “Private Aggregation 
of Teacher Ensembles” (PATE) [11] introduces a model aggregation strategy 
that injects randomness in the aggregation process to achieve privacy protection. 
Another more data-efficient algorithm named Private kNN [12] is the first practical 
differentially private deep learning solution for large-scale computer vision that can 
achieve comparable or better consequences than PATE while reducing privacy loss. 
Inspired by privacy-preserving strategies, we design the obfuscation algorithm in 
the attributes aggression process and apply it to the face de-identification task. 

4.2.2 GAN-Based Face Manipulation 

Generative Adversarial Networks (GANs) [13] is originally proposed to generate 
images from random noise, which have shown remarkable results in various 
computer vision tasks including image generation [14], image translation [15], face 
image synthesis [16], and so on. Facial attribute editing can be regarded as a mul-
tidomain image-to-image translation problem that has received extensive attention 
and research. Conditional GAN (cGAN) [17] considers class information in the 
training process of generator and discriminator to generate samples conditioned 
on the desired class. IcGAN [18] adopts an encoder to generate latent code and 
a cGAN to decode it conditioned on target attributes. AttGAN [19] applies an 
attribute classification constraint and takes the target attribute vector as input to 
the transform model. In StarGAN [20], the multidomain translation problem is 
approached using a single generator instead of a separate generator for each domain. 
STGAN [21] is developed from AttGAN by presenting selective transfer units 
incorporated with encoder–decoder. Li et al. [22] proposed the hierarchical style 
disentanglement (HiSD) to avoid uncontrolled global manipulations in image trans-
lation. In our approach, after obtaining the obfuscation attributes, we reconstruct the 
de-identification results by a face editing GAN to generate the natural facial image 
with pleasant visual perception. 

4.3 Preliminaries 

In this section, we present the problem formulation for face de-identification task 
and a brief introduction to the necessary technical components in our approach.
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4.3.1 Differential Privacy 

Differential privacy is a rigorous mathematical definition of privacy and probability 
is used to take over randomness, which is a strong guarantee since it is based 
on the statistical property of the mechanism without the requirement of auxiliary 
information [23]. 

Definition 4.1 (.ε-Differential Privacy) Let . ε be a positive real number (privacy 
parameter), and the randomized algorithm .A : Y → Θ is said to provide .ε-
differential privacy if for all neighboring datasets .D,D' ∈ Y that differ on at most 
a single element, and all random subsets .S ⊂ Θ satisfy: 

.Pr [A (D) ∈ S] ≤ eε · Pr [A (
D') ∈ S

]
. (4.1) 

There are three commonly used mechanisms in differential privacy according 
to data types: Laplace, Gaussian, and exponential mechanism. The overall idea 
of the exponential mechanism is that when receiving a query, it returns a certain 
probability value calculated by the scoring function q instead of a deterministic 
result, thereby achieving differential privacy. 

Definition 4.2 (Exponential Mechanism) Let .q(D, r) be a function of dataset D 
which selects and outputs an element .r ∈ R, and then an exponential mechanism 
. M is .ε-differential privacy if 

.M(D) =
{
return r with probability ∝ exp

(
εq(D, r)

2Δq

)}
, (4.2) 

where . Δq represents the sensitivity of function q. 

4.3.2 Privacy Amplification 

Subsampling is a widely used tool for privacy amplification, and Poisson sampling 
is the process where each data is subjected to an independent Bernoulli trial to be 
chosen with probability . γ . When we apply the .ε-differential privacy mechanism 
to a random .γ -proportion subset, the whole procedure satisfies . O(. γ ε)-differential 
privacy, which is known as “subsampling lemma” or “secrecy of the samples” 
in the literature [24]. In our approach, Poisson sampling is applied for privacy 
amplification that can provide a stronger privacy guarantee.
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4.4 Our Approach 

We will describe our three-step approach in detail in this section. First of all, we 
employ the facial attribute classifier to predict original attributes. Then we calculate 
the obfuscation attributes with differential private k-anonymity algorithm. Finally, 
we employ the face attribute editing network to generate de-identification results. 

4.4.1 Step 1: Attributes Prediction 

Firstly, we train a facial attribute extraction network to predict labels of query X, 
which has two major functions in subsequent operations. On the one hand, when 
calculating the obfuscation attributes, it will be used as feature extractor to get 
deep features. On the other hand, when generating the de-identification, we take 
the different attributes as input, so we need the original prediction for reference. 

For the c-label classification problem, we adopt MultiLabelSoftMarginLoss as 
loss function, which creates a criterion that optimizes a multilabel one-versus-all 
loss based on max entropy. For each sample in the minibatch: 

.

L(u, v) = − 1

c

c∑

i

v[i] log
(
(1 + exp(−u[i]))−1

)

+ (1 − v[i]) log
(

exp(−u[i])
1 + exp(−u[i])

)
,

(4.3) 

where .v[i] ∈ {0, 1}. Prediction label u and ground truth v are with the same shape 
of .(n, c), where n is the batch size, while c represents the number of classes. At the 
end of this step, we can get the original attributes . P of the given image. 

4.4.2 Step 2: Obfuscation 

We design differential private k-anonymity algorithm shown in Algorithm 1 to 
acquire the obfuscation attributes, which can be summarized as the following two 
parts, and we will further describe their respective functions in Sect. 4.5.3. 

4.4.2.1 k-Anonymity Average Attributes 

For the given no-label query X, we sample a random subset . Dγ with the Poisson 
sampling of probability . γ . Both  X and . Dγ will be mapped into the feature space by
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Algorithm 1: Differential private k-anonymity algorithm 
Input: Given image X, the ratio of Poisson sampling γ , the number of nearest neighbors 

participating in voting k, the parameter of differential privacy ε. 
Output: Obfuscation Attributes O. 

// k-anonymity Prediction 
1: Downsample the training set to obtain the random subset Dγ with Poisson sampling of 

probability γ . 
2: Map X and Dγ to the feature space and select k nearest neighbors from Dγ based on feature  

distance. 
3: Calculate the k-anonymity average attributes R and voting results V = {v1, v2, . . . , vn}. 

// Independent Attributes Set 
4: for attribute ai in independent attributes B do 
5: Calculate the probability p of with ai by Eq. (4.5). 
6: if rand(0, 1) <p then 
7: Add with attribute ai to O. 
8: else 
9: Add without attribute ai to O. 
10: end if 
11: end for 

// Conflict Attributes Set 
12: for group Gi in conflict attributes C do 
13: Calculate each probability pin corresponding to attributes ain in Gi = {ai1 , ai2 ,  . . . ,  aim} 

according to Eq. (4.6). 

14: if rand(0, 1) ∈
[∑k−1 

j=1 pij ,
∑k 

j=1 pij

]
then 

15: Add with attribute aik , without attributes ain(n /=k) to O. 
16: end if 
17: end for 
18: return Obfuscation Attributes O. 

a pretrained feature extractor . ϕ. Then we select k nearest neighbors according to the 
feature Euclidean distance between .x = ϕ(X) and .f = {

fi = ϕ(di) | ∀di ∈ Dγ

}
. 

Notice that for a binary classification task, the global sensitivity is 2, while for 
a problem with c-labels, the global sensitivity will be extended to 2c, which will 
make the following noisy-adding mechanisms inefficient. In order to limit the range 
of global sensitivity, we apply .τ -approximation [12] limitation that means each 
neighbor can only vote for . τ attributes at most. 

Definition 4.3 (.τ -Approximation) Considering the binary multilabel task, the 
vote of neighbor j upon query X can be expressed as a c-way vector, and we apply 

.v̂j,i = vj,i ·min

(
τ

| vj (X) | , 1
)

, i ∈ [1, c], (4.4) 

where .|vj (x)| is the .L1-norm of original neighbor j ’s voting results and . ̂vj is 
the neighbor j ’s voting results with .τ -approximation. The global sensitivity of a 
randomized algorithm .Mτ can be reduced to 2. τ with this setting.
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4.4.2.2 Differential Privacy 

After obtaining the k-anonymity average attributes . R and the corresponding votes . V

= .{v1, v2, . . . , vc}. To introduce more randomness for privacy protection, we further 
apply exponential differential privacy to the voting process as privacy metrics. We 
divide all considered privacy-sensitive attributes . A into independent attributes . B
and conflict attributes . C, which satisfy . A = . B . ∪ . C and . B . ∩ . C = . ∅: 

• Independent Attributes . B. There is no correlation between independent attribute 
. ai and other attributes in . B, that is, we can individually determine whether to 
choose it. Therefore, we count the voting results with this attribute . vi as the value 
of score function q and select the obfuscation attributes based on the probability 
calculated by 

.p =
exp

(
εvi

2Δq

)

exp
(

εvi

2Δq

)
+ exp

(
ε(k−vi )
2Δq

) . (4.5) 

• Conflict Attributes . C. Considering the exclusivity between attributes, we further 
divide conflict attributes set . C into groups as .C = {G1,G2, . . . ,Gm}, where 
there is no mutual influence between different groups. Generally speaking, two 
or more attributes in the same group . Gi will not be selected simultaneously. We 
respectively count the votes of each attribute as the score function q value and 
the probability of selecting attribute . ain in . Gi = {. ai1 , . ai2 ,  . . . , . aim} by  

.pin =
exp

(
εvin

2Δq

)

∑m
j=1 exp

(
εvij

2Δq

) . (4.6) 

4.4.3 Step 3: Image Generation 

We adopt a GAN to generate de-identification images according to the obfuscation 
attributes. For better generation and feature accuracy, we customize the facial 
attribute editing model based on STGAN [21] that improves manipulation ability 
by presenting selective transfer units incorporated with encoder–decoder. Different 
from StarGAN [20] and AttGAN [19], which both take target attributes as input, 
STGAN only focuses on the changed attributes .attrdiff that represent the difference 
between predicted original facial attributes . P and the obfuscation attributes . O in our 
approach. 

The loss function includes adversarial loss .Ladv , reconstruction loss .Lrec, 
and attribute manipulation loss .Lattr . The adversarial loss [13] is applied for 
constraining the generated results to be indistinguishable from real images. We
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follow Wasserstein GAN (WGAN) and WGAN-GP [25] to define the adversarial 
loss as 

. max
Dadv

LDadv
= EXDadv(X) − E

Ŷ
Dadv(Ŷ ) + λE

X̂

[(∥∥∥∇
X̂
Dadv(X̂)

∥∥∥
2
− 1

)2]
,

(4.7) 
.max

G
LGadv

= EX,attrdiffDadv (G (X, attrdiff)) , (4.8) 

where . X̂ is uniformly sampled between a pair of original and generated images and 
.Ŷ = G(X, attrdiff). 

The reconstruction loss is defined as 

.Lrec = ‖X − G(X, 0)‖1, (4.9) 

where the .L1-norm distance is adopted for ensuring the quality and clarity of the 
reconstructed images and .G(X, 0) is the reconstructed images sharing the same 
attributes with the original. 

To improve the accuracy of attributes editing, we introduce the attribute manipu-
lation loss .Lattr . The attribute classifier .Dattr shares the common convolution layers 
with .Dadv , and the attribute manipulation loss is designed as 

. LDattr = −
c∑

i=1

[
attr(i)

p logD
(i)
attr (X) +

(
1 − attr(i)

p

)
log

(
1 − D

(i)
attr (X)

)]
,

(4.10) 

. LGattr = −
c∑

i=1

[
attr(i)

o logD
(i)
attr (Ŷ ) +

(
1 − attr(i)

o

)
log

(
1 − D

(i)
attr (Ŷ )

)]
,

(4.11) 

where .attr
(i)
p means the i-th value of prediction attributes . P, .attr

(i)
o indicates the 

i-th value of obfuscation attributes . O, and .D(i)
attr (X) represents the i-th value of 

attribute classification results of X by the attribute classifier .Dattr . 
Taking the above losses into account, the overall loss function of discriminator 

D can be formulated as 

.LD = −LDadv
+ λ1LDattr , (4.12) 

and that for the generator G is 

.LG = −LGadv
+ λ2LGattr + λ3Lrec, (4.13) 

where . λ1, . λ2, and . λ3 are the model tradeoff parameters.
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4.5 Experiments 

4.5.1 Dataset 

We use large-scale CelebFaces Attributes (CelebA) Dataset [26] that contains 
202,599 aligned facial images and 10,177 identities with 40 with or without 
attributes labels of boolean values. In experiments, we use about half of the dataset, 
of which 75,160 images for training and 26,216 images for test. All images are 
firstly aligned to 178 . × 218, and after detecting face region by dlib packages, we 
crop the images to the size of 128 . × 128. 

4.5.2 Implementation Details 

Attributes Prediction We train the facial attributes classification network on 
CelebA dataset using the Resnet-50 structure. We conduct the batch size of 128, 
set a base learning rate of .4×10−4 reducing by a polynomial decay with a gamma 
of 0.1, and the weight decay is .5×10−4. 

Attributes Obfuscation When performing de-identification for the given image, 
we firstly downsample the training set in proportion to γ to get a random subset 
Dγ and then extract deep features from the fully connected layers of the facial 
attributes classification network. In our experiments, we consider 13 attributes 
to protect, including Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy 
Eyebrows, Eyeglasses, Male, Mouth Slightly Open, Mustache, No Beard, Pale Skin, 
and Young, due to that they are more distinctive in appearance. Among the attributes 
considered, we define two sets of conflicting attributes: G1 = {Black Hair, Blond 
Hair, Brown Hair} and G2 = {Mustache, No Beard}, while the others are all defined 
as independent attributes. 

Image Generation Network We utilize the facial attributes editing to generate 
de-identified images after obtaining the obfuscation attributes. We train on CelebA 
dataset for the considered attributes following the settings in [21], where the tradeoff 
parameters in Eqs. (4.12) and (4.13) are set to λ1 = 1, λ2 = 10, and λ3 = 100. 

4.5.3 Performance Analysis 

Here we present further analysis of our methods including perception effects, 
evaluation of differential private k-anonymity algorithm, and the influence of major 
parameters on experimental results. 

Figure 4.2 illustrates some de-identification results in pairs, where the left 
presents the original image and the right is the de-identified result generated by our
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Fig. 4.2 Some de-identification results generated by our approach. In each pair, the left is the 
original image, while the right is the de-identified 

approach. To further explain the necessity of the two main parts (k-anonymity and 
differential privacy) in Algorithm 1, we compare the obfuscation extent of whether 
introducing differential privacy under different k values. We use the attributes 
accuracy between two attributes sets . M and . N as metrics, which is defined as 

.Accuracy = card(M) − d(M,N)

card(M)
, (4.14) 

where .card(M) represents the number of elements in set . M, which is equal to that 
of . N, and .d(M,N) represents the hamming distance between . M and . N. Higher 
accuracy indicates a smaller difference. 

We set .Δq = 1, .ε = [0, 0.3] with a step length of 0.001 and Poisson 
subsampling ratio .γ = 0.05 to respectively calculate the attributes accuracy with 
different k values between (a) k-anonymity average attributes and prediction (the 
green line), (b) differential private k-anonymity obfuscation attributes and prediction 
(the red line), (c) differential private k-anonymity obfuscation attributes and k-
anonymity average attributes (the blue line). From the results shown in Fig. 4.3, 
we can conclude that there is a high attributes accuracy between k-anonymity
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Fig. 4.3 The impact of differential privacy and k-anonymity on attributes accuracy, where the 
green line represents the effect of k-anonymity, the blue line indicates the randomness introduced 
by differential privacy, and the red line presents the total effect 

average labels . R and the predicted labels . P, which can provide the overall control 
to minimize modification in the de-identification process. However, the pure apply 
of k-anonymity fails to protect sensitive information from the homogeneity attack 
and is vulnerable to the attacks based on background knowledge [27]. Moreover, the 
protection effectiveness is limited especially when the value of k is large. Therefore, 
we employ differential privacy to provide more randomness in obfuscation process 
of more reliable privacy guarantees. 

The influence of two main parameters k and . ε on the attribute obfuscation is 
shown in Fig. 4.4, where the accuracy displayed on the y-axis is represented between 
obfuscation attributes . O and prediction attributes . P. We only perturb the considered 
attributes, while the other attributes without privacy protection keep the same as the 
predicted. When we set .ε = 0.0, it means randomly selecting either with or without
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Fig. 4.4 The influence of different k and . ε values on the obfuscation degree, where the y-axis 
represents attributes accuracy between obfuscation attributes and the prediction 

independent attributes and choosing one of the conflict attributes in same group, 
both with the same probability. As . ε increases, the extent of disturbance decreases, 
and the accuracy will increase. In addition, the attributes accuracy will be greater as 
k increases with the same . ε, and the impact of k values has been magnified after the 
introduction of differential privacy because function q mainly depends on the voting 
results. Particularly, due to the design of conflicting attributes mechanism and the 
prediction deviation of k-anonymity, it will eventually stabilize instead of reaching 
100%. 

4.5.4 Quantitative Evaluation 

We use the following metrics to evaluate our approach comparing with existing 
de-identification methods from both identity protection effectiveness and image 
utility: 

• Identity protection effectiveness: 

– Identity Distance (Id-dis). Most of face verification models judge whether 
two images have the same identity by comparing identity embedding distance. 
We use the Face Recognition to calculate the identity distance (Id-dis), which 
is based on the deep learning model of dlib, and the model tested with Labelled 
Faces in the Wild datasets can achieve the accuracy of .99.38%.
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• Image utility: 

– Image quality: 

. PSNR and SSIM. We use peak signal-to-noise ratio and structure similarity 
to measure image distortion at the pixel level. It should be noticed that 
these indicators just focus on objective image quality evaluation and fail to 
capture many nuances of human perception [28]. 

. FID. We use Fréchet Inception Distance [29] to measure image distance in 
feature space calculated by the Inception-V3 model. When applying system 
distortion, lower FID indicates higher image quality. 

. LPIPS. Learned perceptual image patch similarity [30] distance is applied 
to measure visual similarity that is closer to human perception than 
traditional metrics. 

– Utility for computer vision tasks: 

. Face Detectability (Face-det). We evaluate whether the de-identification 
results are still usable for identity-independent computer vision tasks by 
performing face detection with opencv. We define the proportion of faces 
can still be detected in the protected images as face detectability. 

The comparison results are presented in Table 4.1. Since the strict threshold for 
judging whether two images have the same identity is 0.5 in the face recognition 
model, we choose the values of k and . ε to make Id-dis basically meet the 
threshold. We select two sets of parameters with a smaller obfuscation and a 
larger in traditional methods including blurring, noise, and pixelation, and it can 
be concluded that when adding a small disturbance, there is little impact on 
image quality but almost no effects on identity protection. Increasing the degree 
of disturbance contributes higher protection effectiveness, but the image quality 
and utility will be damaged greatly. Compared with traditional methods, the GAN-

Table 4.1 Comparison with other methods under different metrics 

Id-dis.↑ PSNR.↑ SSIM.↑ FID.↓ LPIPS.↓ Face-det. ↑
Blurring(.r = 5) 0.2573 24.931 0.8005 66.866 0.0654 0.8600 

Blurring(.r = 20) 0.4203 22.666 0.7419 91.623 0.0755 0.6917 

Noise(. σ = 10) 0.2565 21.917 0.7739 32.126 0.0534 0.8136 

Noise(. σ = 30) 0.2911 17.968 0.6281 83.169 0.1265 0.2832 

Pixelation(4 . × 4) 0.3251 25.221 0.8278 26.073 0.0326 0.9302 

Pixelation(8 . × 8) 0.6908 22.686 0.7010 83.666 0.0915 0.0211 

DeepPrivacy [5] 0.7232 20.046 0.7605 27.569 0.0868 0.9606 

CIAGAN [6] 0.5740 19.014 0.5349 36.719 0.0782 0.9455 

AnonymousNet [1] 0.4891 19.102 0.7380 55.047 0.0965 0.8224 

Ours(k = 100,. ε = 0.05) 0.5608 19.069 0.7726 52.888 0.0411 0.9728 
Ours(k = 100,. ε = 0.10) 0.5269 20.308 0.7588 52.214 0.0345 0.9614 

Ours(k = 200,. ε = 0.05) 0.4795 21.029 0.8024 38.315 0.0323 0.9502
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based methods can balance the tradeoff better. Additionally, compared with the 
de-identification methods based on entire face synthesis like DeepPrivacy, our 
algorithm takes the reduction of modification degree into consideration, so that de-
identified results can maintain higher perception similarity (lower LPIPS) with the 
original. CIAGAN is the identity-swapping-based anonymization method so that 
the de-identified face still corresponds to a piece of real identity information, which 
may cause identity leakage in the dataset. Due to the requirement of face landmarks 
and masked background in CIAGAN, it is not convenient in practical applications. 
Our approach can adjust the privacy protection level by controlling the parameters 
k and . ε, so as to meet the application in different scenarios. 

4.6 Conclusion 

In this chapter, we focus on the problem of image privacy and face de-identification. 
In order to confuse the identity information with minor modifications, we propose a 
face image privacy protection method to provide metric privacy based on attributes 
indistinguishability. Our approach consists of three steps: attributes prediction, 
privacy protection attributes obfuscation, and de-identification image generation. 
We design the differential private k-anonymity algorithm that combines exponential 
differential privacy mechanism to introduce additional randomness to the average 
attributes of k nearest neighbors in random subset. The method we propose can 
achieve pleasant visual perception and balance the tradeoff between privacy and 
utility by adjustable parameters. Experiments demonstrate that our method is 
effective in identity protection and utility preservation. 
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Chapter 5 
Differential Private Identification 
Protection for Face Images 

5.1 Introduction 

Today’s popularity of smartphones allows people to take their face photos conve-
niently. Particularly, the blooming development of media and network techniques 
makes a vast amount of photos more approachable. At the same time, however, 
advanced image retrieval and face verification models allow to index and examine 
privacy relevant information more reliably than ever. Consequently, among those 
image sources exposed to the public with or without our awareness, the wide range 
of private information inadvertently leaked is severely underestimated [1]. 

Opportunities for misuse of the unprotected face image and advanced computer 
vision technologies are numerous and potentially disastrous [2]. Restrictive laws 
and regulations such as the General Data Protection Regulations (GDPR) [3] have  
taken effect. GDPR requires regular consent from the individual for any use of their 
personal data to guarantee data privacy; however, it also makes the creation of high 
quality datasets that include people becoming extremely challenging. Fortunately, 
if the data does not allow us to identify the corresponding individual, entities are 
free to use the data without consent. what is more, many computer vision tasks in 
practice, such as detection, tracking, or people counting, do not need to identify the 
people, but to detect them. 

All the troubles and dilemmas mentioned above can be summarized to one issue: 
Given a face image, how can we create another image with similar appearance 
and the same background, while the real identity is hidden and face detectors are 
still allowed to work. Traditional anonymization techniques are mainly obfuscation-
based and always significantly alter the original face. Other previous work in this 
field is sparse and limited in both practicality and efficacy: k-Same algorithm-
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Fig. 5.1 IdentityDP for face anonymization. In each pair, left is the original image and right 
is the corresponding de-identified result. The results show that face identities are changed in a 
perceptually natural manner, and in the meantime, each pair of images still shares most of the 
information irrelevant to identity 

based methods [4–8] fail to make full use of existing data and deliver fairly 
poor visual quality, adversarial perturbation-based methods [9–14] usually depend 
highly on the accessibility of the target system and require special training, and 
recent Generative Adversarial Network (GAN)-based methods [15–24] have trouble 
generating visually similar de-identified faces as well. Note that there exists a 
tradeoff between privacy protection and dataset utility [25, 26], and previous 
methods are unable to balance this matter. 

To tackle these challenges, we propose IdentityDP, a framework designed to 
anonymize face images without significantly distorting the original images or 
destroying the availability of face detectors (see Fig. 5.1). Especially, individuals 
are allowed to have control over the anonymization procedure to get the most 
suitable results in practice. IdentityDP achieves this by helping users adding well-
designed obfuscation to photos’ high-level identity representations. For example, a 
user who wants to share photos on social media or the public web can add adjustable 
perturbations according to his demands through our framework before uploading 
them. The uploaded photos will look similar to the original ones, but when an 
adversary employs a general face verificator to compare the user’s face images with 
the altered ones, it will indicate that they are from different people. 

The proposed IdentityDP framework consists of three stages. Stage-I aims 
to perform facial representation disentanglement. We train a specially designed 
GAN for disentanglement between high-level identity representation and multilevel
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attribute representations in the feature space. Here the identity representation 
affects face verification systems to judge whether it is the same person, and the 
attribute representation guarantees the visual similarity. Stage-II carries out an .ϵ-
IdentityDP mechanism, where adjustable DP [27] perturbations are applied to 
the identity representation. Stage-III implements the image reconstruction. In more 
detail, we fix the well-trained GAN network in Stage-I and generate de-identified 
face images utilizing the perturbed identity representation as well as the original 
attribute representations. IdentityDP leverages both the GAN’s outstanding ability 
to disentangle images’ representations in the latent space and DP theory, managing 
to balance the tradeoff between image quality and privacy protection according to 
practical needs. In addition, our framework requires neither pre-annotation nor pre-
detection of faces but can generate numerous anonymous results. 

Our contributions in this work are as follows:

• We propose a general framework that is suitable for the de-identification of 
people in face images.

• As far as we know, we are the first to introduce the rigorously formulated DP 
theory into the face-anonymous task. The users are able to get not only high 
quality anonymous images but also an adjustable privacy protection mechanism.

• We demonstrate that our method does not require special training or targeted 
adjustments for many unauthorized identity verification systems or face datasets 
that have never seen before.

• We show that images anonymized by our method can be detected by common 
face detection models, so the processed images are still usable for identity-
agnostic computer vision tasks (such as monitoring and tracking).

• We show that our de-identified method is significantly less computationally 
complex and consumes a small amount of computing resources. 

The remainder of this chapter is organized as follows. In Section II, we 
summarize related work. Section III formalizes the face de-identification problem, 
introduces relevant DP theory, and proposes our assumptions. Section IV outlines 
the three-stage IdentityDP framework. Results of experiments analyzing the pro-
posed IdentityDP method and comparisons with existing methods are reported 
in Section V. We conclude in Section VI with discussions of future research 
direction. 

5.2 Related Work 

In Chap. 3 of this book, we have classified face image de-identification methods 
according to the main technical means used. We introduce the current research status 
of corresponding methods category by category. Since in this chapter we propose a 
theoretically guaranteed face image identity protection scheme, here we specifically
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summarize the face image de-identification methods which can provide theoretical 
guarantees. These methods can be divided into the following three categories based 
on the theory that provides support. 

5.2.1 Face De-identification Methods Guaranteed by 
k-Anonymity Theory 

The k-anonymity theory was first proposed by Sweeney et al. in 1998 [28]. It 
was later modified and expanded and finally established in 2002 [29]. It can 
provide privacy protection for objects whose data-shape is (or can be regarded as) 
collections of quasi-identifiers. However, when encountering homogeneity attack 
[30], background knowledge attack [30], composition attacks [31], and the presence 
of supplementary data, the k-anonymity theory will not be able to provide privacy 
guarantees that meet theoretical expectations. 

This privacy theory is adaptively adjusted by Newton et al. [4] based on the 
data form of face images and is summarized as the k-Same algorithm in the study 
of face de-identification. Before the rise of deep learning, k-anonymity theory was 
the most popular theoretical pillar when developing new guaranteed face identity 
privacy protection algorithms. In this book, the face image de-identification method 
based on the k-Same algorithm has been specifically introduced in Sect. 3.1.2. 

Although this series of methods used to be the mainstay in the field of face de-
identification, there are two significant shortcomings in them that caused them to 
be quickly iterated after the development of DNN. These two shortcomings are 
as follows: (1) The strict preconditions in the k-Same algorithm are difficult to 
meet in practical use, so the actual privacy performance generally cannot reach the 
theoretical guarantee value, and (2) the de-identified face generated by the k-Same 
algorithm often has lower visual quality than the original face and may result in 
double shadow effect and artifacts due to the dislocation between multiple faces. 
In particular, the existence of at least k-similar generated faces is not conducive to 
the normal use of these faces, so the utility performance of this kind of method is 
generally unsatisfactory. 

5.2.2 Face De-identification Methods Guaranteed by 
t-Closeness Theory 

The t-closeness theory is proposed by Li et al. in 2006 [32]. It requires that 
the distribution of a sensitive attribute in any equivalence class is close to the 
distribution of the attribute in the overall table (i.e., the distance between the two 
distributions should be no more than a threshold t). This theory effectively limits the 
amount of personal-specific information that an attacker can learn and can cope with
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attacks of globally distributed information that possesses sensitive characteristics, 
thus making up for the shortcomings of the above k-anonymity theory. 

As far as we know, at present only the AnonymousNet [15] is a face de-
identification method whose privacy protection is guaranteed by this t-closeness the-
ory. AnonymousNet is an attribute manipulation-based method, which is described 
in detail in Sect. 3.1.4.1. It has four stages, of which the second stage implements the 
most critical identity privacy protection, which is accomplished by blurring facial 
attributes with PPAS algorithm that complies with the t-closeness theory. Although 
it can provide theoretically guaranteed privacy protection for identities, the faces 
de-identified by this method are significantly different from the original faces. In 
addition, this method is inconsistent with common sense, that is, it is generally 
believed that facial attributes (such as hairstyle, skin color, eyebrow thickness, etc.) 
can be changed through makeup, and these do not mean a change in identity. 
Therefore, even if this method leads to experimentally verified identity changes 
through cumulative changes of facial attributes, it is inconsistent with people’s 
common sense and experience. 

5.2.3 Face De-identification Method Guaranteed by 
Differential Privacy Theory 

Face de-identification methods that provide privacy guarantees based on k-
anonymity theory and t-closeness theory have shortcomings in both privacy and 
utility performance, so researchers begin to seek better privacy guarantees. With 
the development of DNN-based face representation learning and the progress in 
the field of database privacy protection, DP theory, as a rigorous privacy theory 
with practical protection capabilities, has begun to be selected as a theoretical 
guarantee by some methods. These methods treat the images as databases, then 
define different database records and add various DP noise on them, and ultimately 
achieve DP theory guaranteed privacy protection. 

Some methods treat global pixels within an image as database records and 
design DP mechanisms for them. Fan proposes a pixelation method, DP-Pix [33], 
guaranteed by DP theory. DP-Pix first pixelates the source image and then designs 
a Laplace DP mechanism for the pixelated image. Although effectively protecting 
identities, this approach significantly reduces the utility of de-identified face images. 
Later, the same author proposes a blur-based method, DP-Blur [34], whose privacy 
protection is also guaranteed by the DP theory. The difference is that DP-Blur 
first pixelizes the input image and adds Gaussian DP perturbation. Then the image 
is upsampled back to the original size, and Gaussian blur is implemented. This 
approach also significantly damages the utility of the image. In order to improve the 
utility performance of generated images, the author proposes the DP-SVD method 
[35], which uses Singular Value Decomposition (SVD) to maintain the perceptual 
similarity between images. The concrete step is to first convert the face area into a
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feature vector and then perform random sampling that satisfies the metric privacy 
to achieve guaranteed privacy protection. The sampled feature vectors are inversely 
transformed to generate an anonymized image at last. However, the visual quality of 
the generated images is still unsatisfactory. Saleem et al. propose an interactive face 
image de-identification framework [36] including DP-Pix and DP-SVD methods. 
In addition, the privacy protection method guaranteed by DP theory proposed by 
Liu et al. [37] is achieved by adding global noise. Specifically, they first use image 
segmentation technology to transform the image gray matrix into a one-dimensional 
ordered data stream and then use a sliding window model to model the data stream. 
By comparing the similarity of data in adjacent sliding windows, they dynamically 
allocate the privacy budget and add Laplace noise. 

Other methods treat the latent features of images as database records and design 
DP mechanisms for them. For example, Croft et al. [38] apply DP theory to protect 
the digital representation extracted from pixel intensities by a generative model and 
generate an output that looks like a real face through an AAM or a GAN model. 
In the context of preserving demographic information in images, this method can 
achieve comparable utility to the k-Same family methods. However, the quality 
of the generated images and the similarity to the original images are still not 
satisfactory. Later, Chen et al. introduce perceptual indistinguishability (PI) based 
on metric privacy [39] as a formal privacy notion particularly for images, which is a 
variant of DP theory that takes into account the perceptual similarity of face images, 
and propose PI-Net [40], an encoder–decoder architecture for image obfuscation 
with PI guarantee. In particular, they inject PI guaranteed noise into latent codes 
derived from GAN inversion and use triplet loss to cluster faces with similar facial 
attributes. These designs enable PI-Net to generate de-identified images that look 
realistic and satisfy user-defined facial attributes. However, since real images have 
been proven to be unable to faithfully invert back to the latent space of GAN [41], 
the process of image reconstruction based on GAN inverted features by PI-Net will 
cause the background of the generated image to change, and the face looks different 
from the original image. These do not meet the user’s expectation. 

There are two recent research works [42, 43] trying to implement the DP 
mechanism in images, both with the main new idea of injecting DP noise in 
the entire latent space. The biggest disadvantage of these two works is that the 
quality of the output is very sensitive to the size of the noise. Even a large privacy 
budget, that is, a small noise perturbation, will distort the generated face image. 
In addition, the work [44], a contemporaneous work with the study in this chapter, 
also achieves identity protection by applying the differential privacy mechanism to 
image embedding in the latent space obtained through GAN network. The difference 
is that those authors control the application of noise by using principal component 
analysis (PCA), so as to achieve a favorable tradeoff between privacy and utility. 
However, after protecting the identity privacy of the image, this method can only 
maintain two attributes as the original image, i.e., the same head pose and gender. 
In contrast, the method proposed in this chapter can keep the generated image more 
similar to the original image, and the overall visual effect is better.
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5.3 Preliminaries 

5.3.1 Problem Formulation 

A face de-identification model can be viewed as a transformation function . δ that 
maps a given face image X to a de-identified image . X̂, aiming to mislead face 
verification systems. Essentially, we are generating a new fake identity out of the 
input image. The problem can be formulated as follows: 

.δ(X) = X̂ (5.1) 

s.t. : Identity{X} /= Identity{X̂}. 

Meanwhile, considering the utility of de-identified image, . X̂ should look similar to 
X as much as possible and be detectable by general face detectors. 

5.3.2 Differential Privacy Theory 

5.3.2.1 Differential Privacy 

Differential privacy (DP) [27], a cryptography-inspired privacy-preserving model, 
guarantees that the likelihood of seeing an output on a given original dataset is close 
to the likelihood of seeing the same output on another dataset that differs from the 
original one in any single row. Here, the output could be another dataset, a statistical 
summary table, or a simple answer to a query, etc. Generally speaking, the basic idea 
of a DP mechanism is to introduce randomness into the original dataset, so that any 
individuals’ information cannot be inferred by an adversary looking at the released 
output. 

A formal definition of DP is shown below: 

Definition 5.1 (.ϵ-DP [45]) A randomized mechanism . T gives .ϵ-differential pri-
vacy if for any neighboring datasets D and . D' differing on one element and all 
transcripts t , 

.

∣
∣
∣
∣
ln

(
Pr[T(D) = t]
Pr[T(D') = t]

)∣
∣
∣
∣
≤ ϵ. (5.2) 

This parameter . ϵ, which is usually referred to as a privacy budget, is a bound on 
the ratio of the likelihood probabilities of seeing the same output on neighboring 
datasets. The smaller the value of . ϵ, the stronger the privacy guarantee. 

A random perturbation can be added to achieve the DP. Sensitivity calibrates the 
amount of noise for a specified query f of dataset D. .Δf is the .l1-norm sensitivity 
defined as follows:
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Definition 5.2 (.l1-Norm Sensitivity [45]) For any query f : .D → R, .l1-norm 
sensitivity is the maximum .l1-norm of .f (D) − f (D'), i.e., 

.Δf = max
D,D' ||f (D) − f (D')||1. (5.3) 

The Laplace mechanism is one of the most generic mechanisms to guarantee 
differential privacy [46]. 

Definition 5.3 (Laplace Mechanism [45]) Given a function f : . D → R, the  
following mechanism . T provides the .ϵ-differential privacy: 

.T(D) = f (D) + Lap

(
Δf

ϵ

)

. (5.4) 

5.3.2.2 Local Differential Privacy 

In traditional DP setting, there is a trusted curator who applies carefully calibrated 
random noise to the real values returned for a particular query. However, in many 
practical scenarios, the curator might not be trustworthy. In the local setting, there 
is no trusted third party, and the data needs to be randomized without the global 
knowledge. Local differential privacy (LDP) [47–49] is applicable to this case. It is 
considered to be a strong and rigorous notion of privacy that provides plausible 
deniability and is deemed to be a SOTA approach for privacy-preserving data 
collection and distribution. 

Definition 5.4 (.ϵ-LDP [50]) A randomized mechanism . A satisfies .ϵ-LDP, if for 
any two inputs .v, v' and the set of all possible outputs .y ∈ Y, . Y = Range(. A), . A
satisfies 

.Pr[A(v) = y] ≤ eϵ · Pr[A(v') = y]. (5.5) 

And the sensitivity in this case equals 

.Δf = max
v,v'∈V

||f (v) − f (v')||1. (5.6) 

5.3.2.3 Two Important Properties 

Our approach relies on two key properties of DP. The first is the widely used parallel 
composition property when designing mechanisms: 

Property 5.1 (Parallel Composition [51]) Suppose we have a set of privacy mech-
anisms M = {. M1,. . . ,.Mm}, and if each .Mi provides . ϵi privacy guarantee on a
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disjointed subset of the entire dataset, M will provide (max{. ϵ1,. . . ,. ϵm})-differential 
privacy. 

The second is the well-known post-processing property: 

Property 5.2 (Post-processing Property [52]) Any computation applied to the out-
put of an (. ϵ,. δ)-DP algorithm remains (. ϵ,. δ)-DP. 

For example, averaging, rounding, or any change to the output will not impact the 
privacy of the data. This means that an analyst can conduct any data post-processing 
on a released DP dataset and cannot reduce its privacy guarantee. 

5.3.3 Face Verification and Our Assumptions 

The key idea of face verification is to develop effective representations in feature 
space for reducing intra-personal variations while enlarging inter-personal differ-
ences [53]. The most ideal state is directly learning a mapping from face images to a 
compact feature space where distances precisely correspond to a measure of identity 
similarity. There are currently two main types of solutions: One is metric learning-
based, and contrastive loss [54], center loss [55], and triplet loss [56] are proposed 
to enhance the discrimination power of features, and the other is angular margin-
based, and many efforts [57–60] about angle margin penalty have greatly improved 
the verification accuracy. To some extent, anonymization can be considered as a task 
to protect someone’s identity representations from being correctly classified. 

Here we have an assumption that identity representations of one person in differ-
ent feature spaces are interrelated. Once a face image’s high-level representation 
in one feature space is disturbed into the wrong identity category, its identity 
representations in other feature spaces would also be classified incorrectly. 

5.3.4 The Proposed IdentityDP Framework 

For a given original clean face image X, our proposed IdentityDP framework 
can be used to generate its anonymous face images . X̂ in a controllable manner. 
We factor the face de-identification task into three stages. In the first stage, we 
use a person’s image as input and disentangle the latent space information into 
two main representations, namely identity and attribute. Among them, identity 
representation is modeled by embedding features through an encoder, while attribute 
representations are modeled by multilevel embedding features through a decoder, 
and then the original face image is restored in an adaptively manner. In the second 
stage, we impose .ϵ-IdentityDP perturbations on identity representation according to 
practical demands. In the third stage, we freeze all the parameters of the network
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Fig. 5.2 Architecture of the proposed three-stage IdentityDP framework, which is based on a 
data-driven DNN and a Laplace ϵ-IdentityDP mechanism. Stage-I: training a network which can 
first extract disentangled high-level identity representation with multilevel attribute representations 
and then restore the original face; Stage-II: generating the perturbed identity representation under 
the ϵ-IdentityDP mechanism; and Stage-III: crafting anonymous faces from perturbed identity 
representation and original attribute representations through the frozen network 

and synthesize anonymous face image with the perturbed identity representation. 
The overall architecture of the IdentityDP framework is shown in Fig. 5.2. 

5.3.5 Stage-I: Facial Representations Disentanglement 

In Stage-I, given an input face image, our goal is to represent the image using 
two disentangled representations, .rid and . ratt . .rid is expected to contain all the 
information relevant to the identity, and .ratt contains the rest of information carried 
by the image. We investigate how to generate satisfactory face images with a 
specific disentanglement intention (i.e., identity and attribute) in mind. The key 
idea is to explicitly guide the generation process by an appropriate representation 
of that intention. Therefore, our network consists of three components: (1) Identity 
Encoder, (2) Attribute Encoder, and (3) Fusion Generator. 

Identity Encoder As mentioned before, studies on face verification and recog-
nition have made arduous efforts in finding suitable face features that can reduce 
intra-personal variations while enlarging inter-personal differences, which is in line 
with our requirement of identity representation. Therefore, we choose a pretrained 
SOTA face recognition model [60] as our identity encoder, so as to exploit the 
existing technology to extract high-level identity representation in latent space. 
This pretrained model [60] can provide highly discriminative features for face
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recognition and has a clear geometric interpretation due to the exact correspondence 
to the geodesic distance on the hypersphere. The identity representation .rid(X) is 
defined to be the last feature vector before the final FC layer, which can present off-
the-shelf precise facial identity features to avoid training from scratch. It is denoted 
as 

.rid (X) = f (X). (5.7) 

Attribute Encoder Attribute representation, which determines pose, expression, 
illumination, background, and so on, intuitively carries more spatial information 
than identity. Johnson et al. [61] have illustrated that low-level features tend to 
preserve image content and overall spatial structure, while high-level features tend 
to preserve color, texture, and exact shape. In order to preserve different level 
details, we employ multilevel feature maps to represent the attributes. In specific, 
we feed the input image X into a U-Net-like structure and then use the feature maps 
generated from the U-Net decoder as the attribute representations. More formally, 
we denote 

.ratt (X) = g(X) =
{

r1
att (X), r2

att (X), . . . , rn
att (X)

}

, (5.8) 

where .rk
att (X) represents the k-th level feature map from the U-Net decoder, and n 

is the number of feature levels. 
This attribute encoder does not require any artificial annotations, and it extracts 

the attributes using self-supervised training: We require that the generated de-
identified face . X̂ and the original face X have the same attributes embedding. The 
loss function will be introduced later in Eq. (5.16). 

Fusion Network After obtaining the disentangled identity and attribute represen-
tations, we would like to learn a way to integrate them to reproduce the original face 
image, which will be used in our subsequent steps. Through a simple trial, we find 
that direct feature concatenation can easily lead to blurry results and is not expected 
to be used. Fortunately, Li et al. used Adaptive Attentional Denormalization (AAD) 
ResBlk [62] to achieve remarkable feature integration in multiple feature levels. 
They argued that the attention mechanism with denormalizations can make the 
effective regions of features more adaptive to adjust. This is an appealing property 
for fusion network since identity and attribute representations can participate in 
synthesizing different parts of the face. We integrate n AAD ResBlks to the body of 
our fusion network. As illustrated in Fig. 5.2, in Stage-I, after extracting the identity 
representation .rid and encoding multilevel attribute feature maps . ratt , the fusion 
generator integrates them through cascaded AAD ResBlks to restore the original 
face image X: 

.X = h(rid , ratt ). (5.9) 

The training of h(.) will be discussed in the following sections.
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5.3.6 Stage-II: ϵ-IdentityDP Perturbation 

Stage-II generates the perturbed identity representation under a novel Laplace .ϵ-
IdentityDP mechanism, which is defined as follows: 

Definition 5.5 (.ϵ-IdentityDP Mechanism) A randomized mechanism . M satisfies 
.ϵ-IdentityDP, i.e., if for any two inputs face images .X,X' and the set of all possible 
outputs .y ∈ Y, . M satisfies .Pr[M(X) ∈ Y] ≤ eϵ · Pr[M(X') ∈ Y]. For a face 
image X, if  

.f (X) = rid(X) (5.10) 

and 

.M(X) = rid(X) + Lap

(
Δf

ϵ

)

= r̃id (X), (5.11) 

we say that .M(X) satisfies .ϵ-IdentityDP. 
And the sensitivity is calculated as follows: 

.Δf = max
X,X' ||rid(X) − rid(X')||1. (5.12) 

To generate the perturbed identity representation in Eq. (5.11) and achieve the 
.ϵ-IdentityDP mechanism, we employ a noise generator to generate suitable Laplace 
noise whose size equals the high-level identity representation according to specific 
privacy budget . ϵ. To be more specific, in Stage-II, we employ a noise generator to 
generate Laplace noise whose size equals to .rid (X) based on the selected privacy 
budget . ϵ, and then we directly add the noise on .rid(X) to obtain a perturbed identity 
representation . ̃rid . 

5.3.7 Stage-III: Image Reconstruction 

Stage-III is conditioned on the obfuscated identity representation .r̃id (X) and the 
original multilevel attribute features .ratt (X). In order to achieve good de-identified 
results, we freeze all the parameters of the well-trained fusion network in Stage-
I and generate anonymous face image . X̂ by combining the perturbed identity 
representation .r̃id and the original attribute representations .ratt (X) through the 
fusion network, which is formulated as 

.X̂ = h(M(X), g(X)) = h(r̃id, ratt ). (5.13) 

It can be approved that the generated image . X̂ follows .ϵ-IdeneityDP.
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Proof First, according to definition in Eq. (5.11), .M(X) satisfies .ϵ-IdentityDP: 

. 
Pr(r̃id|f (X))

P r(r̃id|f (X'))
=

m
∏

i=1

exp(−|rid(i) − f (X)i |/Δf
ϵ

)

exp(−|rid(i) − f (X')i |/Δf
ϵ

)

=
m

∏

i=1

exp

(
ϵ(|rid(i) − f (X')i | − |rid(i) − f (X)i |)

Δf

)

≤
m

∏

i=1

exp

(
ϵ|f (X)i − f (X')i |

Δf

)

= exp

(
ϵ · ∑m

i=1 |f (X)i − f (X')i |
Δf

)

= exp

(
ϵ · ∥

∥f (X) − f (X')
∥
∥

1

Δf

)

≤ exp(ϵ),

where the first inequality follows from that .|a| − |b| ≤ |a − b| for any . a, b ∈
R. The rest of proof follows from the post-processing property of DP. Hence, we 
can conclude that if the identity representation is treated with DP noises, then the 
reconstructed face image . X̂ also satisfies the .ϵ-IdentityDP defined in Definition 5.5. 

5.3.8 Training Process 

In Stage-I, we need to build a network which can not only disentangle identity and 
attribute representations but also restore the original input face image from these 
two representations. 

We utilize adversarial training for this framework. Let .Ladv be the adversarial 
loss to make . X̂ realistic. It is implemented as a multi-scale discriminator [63] on the  
downsampled output images: 

.Ladv(X̂,X) = log Dimg(X) + log(1 − Dimg(X̂)). (5.14) 

An identity preservation loss is used to preserve the identity of the source. It is 
formulated as 

.Lid = 1 − cos(rid(X̂), rid (X)), (5.15) 

where .cos(·, ·) represents the cosine similarity of two vectors. We also use the 
attribute preservation loss, which is defined as half of the sum of the squared 
Euclidean distances between the multilevel attribute representations from X and
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. X̂. More formally, we denote 

.Latt = 1

2

n
∑

k=1

∥
∥
∥rk

att (X̂) − rk
att (X)

∥
∥
∥

2

2
. (5.16) 

Besides, we set pixel-level . L2 distance as the reconstruction loss to guarantee the 
visual similarity, which is formulated as 

.Lrec = 1

2

∥
∥
∥X̂ − X

∥
∥
∥

2

2
. (5.17) 

The full objective to train our network in the first stage is a weighted sum of 
above losses as 

.Ltotal = Ladv + λattLatt + λidLid + λrecLrec, (5.18) 

where .λatt , . λid , and .λrec are the weight parameters for balancing different terms. 
In practice, GAN is hard to train, so adjusting the training strategy according to 

real-time generation effect is necessary. In order to use visualization tools to judge 
our training effect and make appropriate adjustments in time, we extract identity 
and attribute representations from two faces randomly sampled from the training 
dataset and then fuse them together during the training process. It is worth noting 
the reconstruction loss should be set to .Lrec = 0 when the two faces are different. 

5.3.9 Some Discussions About Our Research Topic 

(1) The motivation of using DP for face de-identification 
The reason we need to perform de-identification is that the face image is 
a personal identifier which should be properly protected from the privacy 
perspective. In more detail, we want to prevent the information leakage of 
personal identities from releasing face images, and we hope that the privacy 
protection level can be measured by a formal criterion. Meanwhile, although 
DP is the most widely used notion for privacy protection, there is no effective 
and formal DP definition or mechanism in the context of image. This motivates 
us to use DP to prevent identity information leakage from face images, and 
we propose the IdentityDP method which makes an initial contribution to this 
meaningful research topic. 

(2) Are we just doing adversarial attack-based privacy protection? 
Initially, an adversarial attack is perceived as an “attack” method to mislead AI 
models, i.e., adding small (often human invisible) perturbation to the input data 
sample so as to corrupt the prediction of a deep learning model. Although there 
have been a few recent studies [14, 64] that explored the idea of adversarial
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attacks for privacy protection, these methods differ significantly from our 
proposed method in the following two aspects:

• Adversarial attack-based privacy protection methods usually assume a 
machinery adversary, e.g., a deep learning model from previous work. 
As the adversarial perturbation is often small, the protection provided is not 
necessarily effective against human eyes. In contrast, our proposed method 
considers both human and machine as adversaries and provides effective 
privacy protection against both types of adversaries.

• There is no formal and strict privacy guarantee provided by the adversarial 
attack-based privacy protection methods, while the privacy level of our 
proposed IdentityDP is clearly defined and rigorously guaranteed by the DP 
criterion. 

(3) Are we just doing differentially private machine learning? 
Researchers in the field of differentially private deep learning [65] are work 
on preventing model itself from releasing private information of its training 
datasets and maintaining a manageable cost in software complexity, training 
efficiency, and model quality at the same time. However, it is different from 
our research topic of face de-identification. De-identification is a process which 
aims to remove all identification information of the person from an image or 
video while maintaining as much information on the action and its context with 
a similar looking appearance [23, 66]. Our concentration is to protect the private 
identity information of face images, but not to prevent our model from releasing 
private information of our training face datasets. In more detail, the role of 
machine learning in these two tasks is different: Their topic is to make machine 
learning system private, i.e., machine learning system is the target of privacy 
protection; however, our topic is to use machine learning techniques to enhance 
privacy protection (i.e., prevent the information leakage of personal identifiers 
from released face images). Therefore, these are two different research topics. 

(4) Recent researches on DP-based face de-identification 
Applying DP in images is a promising research topic because of the increasing 
concerns on image privacy, especially face privacy, and there are a few recent 
work [42, 43] to study this problem. They all try to implement DP into images, 
but in different ways. The main idea of these methods is to inject DP noise in 
the whole feature (latent) space. The disadvantage is that the photo’s quality is 
very sensitive to the amount of noise, and even a small noise perturbation (large 
epsilon value) will make the photo distorted. Our work solves this problem 
by only adding noise to the disentangled identity representation. The essential 
point of our proposed method is that the noise needed for de-identification is 
much smaller than the existing methods, as the disentangled identity vector 
has a much smaller norm than the whole latent space vector. In addition, 
Laplace mechanism is the most often used mechanism to achieve a strict DP 
privacy guarantee. While other mechanisms such as Gaussian mechanism and 
Exponential mechanism may also be used, they are not as popular as Laplace 
mechanism. Hence, the existing methods [42, 43] that implement DP for images
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all adopt the Laplace mechanism, and we select the Laplace DP mechanism in 
our method at the second stage too. 

5.4 Experiments 

5.4.1 Experimental Setup 

(1) Datasets: We choose the CelebA-HQ dataset, which contains 30K high-
resolution celebrity images with diverse demographic information like age, 
gender, and race [67], to train our network in Stage-I. We randomly select 27K 
images for training and 3K for testing. Moreover, in order to demonstrate our 
generalization ability and compare with conditional comparisons conveniently, 
we also test IdentityDP on the CelebA [68] datasets. All images are aligned and 
cropped to size 256×256 covering the whole face, as well as some background 
regions. 

(2) Comparison methods: To validate the effectiveness of the proposed IdentityDP 
framework, we compare it to traditional anonymization methods as well as 
SOTA methods.

• Traditional anonymization methods. We use Pixelization, Noise, and Blur of 
faces.

• State-of-the-art methods. We select four methods: AnonymousNet [15], Deep-
Privacy [19], CIAGAN [24], and Fawkes [14]. 

5.4.2 Evaluation Metrics 

We evaluate all methods in privacy metrics as well as utility metrics. 

(1) Privacy metrics. Two different metrics are used to measure the performance of 
privacy protection.

• Identity Distance .ID_DIS. We employ FaceNet identification model [56] 
based on Inception-ResNet backbone, pretrained on two public datasets: 
CASIA-WebFace [69] and VGGFace2 [70], whose LFW accuracy can reach 
99.05 and 99.65% individually. The output distance of FaceNet can indicate 
the pairs of input faces’ identity difference.

• Protection success rate .PSR. Besides publicly available datasets and known 
model architectures for academic usage, we also wish to understand the 
performance of IdentityDP on public facial verification services that people 
may touch in daily life. Therefore, Microsoft Azure Face [71] is employed to  
evaluate real-world effectiveness of a method. It gives judgement of whether
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the input pairs are of the same people. The protection success rate is the 
proportion of faces that are judged as different from the original ones. 

(2) Utility metrics. Three different metrics are used to evaluate the utility of 
processed images.

• PSNR and SSIM. We choose peak-signal-to-noise ratio (PSNR) as well as 
structural similarity index measure (SSIM) as two objective measures of 
similarity between anonymous results and original faces.

• Face detection rate .FDR. We evaluate whether the processed images are still 
usable for subsequent identity-agnostic computer vision tasks by performing 
face detection using HOG [72] detector, and we calculate the proportion of 
faces that can be detected in the protected images. 

5.4.3 Implementation Details 

We implement our framework as shown in Fig. 5.2. The number of attribute 
representations is set to .n = 8 (Eq. (5.8)). The detailed network structure is given 
in Fig. 5.3. Specifically, we build the network almost according to the description in 
literature [62], except that we select the pretrained SOTA face recognition model, 
ArcFace [60], whose output is a 512-dimensional vector as our identity encoder, 
while the dimension of identity vector in the original FaceShifter is 256. Besides, 
we also modify the corresponding channels in Fusion Network that are related to the 
high-level identity representation to adapt to this change. In the training process, we 
use the Adam optimizer [73] with momentum parameters .β1 = 0, β2 = 0.999. The  
learning rate is set to 0.0004. The parameters in Eq. (5.18) are set to . λatt = λrec =
10, λid = 5. The size of identity representation is .512 × 1 × 1, and the upper bound 
of sensitivity is 512. 

5.4.4 ϵ-IdentityDP Mechanism Analysis 

To explicitly understand the DP mechanism in our proposed IdentityDP, we design 
an experiment to explore how the privacy budget . ϵ affects the face anonymization 
performance. First of all, we extract every test image’s identity representation 
and calculate the .l1-norm sensitivity . Δf , i.e., .Δf = max

X,X' ||rid(X) − rid(X')||1, 

.X,X' ∈ test datasets. Then we increase . ϵ from 1 to 800 and accordingly adjust 
the IdentityDP framework. Since our .ϵ-IdentityDP mechanism .M(X) is . M(X) =
rid (X) + Lap(

Δf
ϵ

), we double . ϵ for better display effect, and 100 anonymous faces 
are generated for every test face under each . ϵ. Besides, we technically explore the 
case when . ϵ varies uniformly in the interval (0,1] where the perturbation changes
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Fig. 5.3 Network structure 
of the proposed neural 
network in Stage-I. Conv k,s,p 
represents a Convolutional 
Layer with kernel size k, 
stride s, and padding p. 
ConvTranspose k,s,p 
represents a Transposed 
Convolutional Layer with 
kernel size k, stride s, and  
padding p. All LeakyReLUs 
have .α = 0.1. AAD ResBlk 
(. cin, . cout ) represents an AAD 
ResBlk [62] with input and 
output channels of . cin and 
. cout
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Fig. 5.4 Identity protection performance: (a) the identity distance calculated by FaceNet model 
trained on CASIAWebFace and VGGFace2 datasets respectively; (b) the Protection success rate 
calculated through public facial verification service [71] 

more dramatically. Finally, various statistical mean metric values are calculated at 
each . ϵ value. 

For privacy protection, when . ϵ increase from 0.01 to 800, Fig. 5.4a shows that 
the average identity distance decreases gradually, and Fig. 5.4b shows that the 
protection success rate decreases from 97.367 to 1.125%, illustrating that a smaller 
privacy budget guarantees better de-identified results. We show anonymous image
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Fig. 5.5 Image utility performance: (a) PSNR and SSIM and (b) the Face detection rate calculated 
through HOG detector 

whose identity distance is closest to the mean distance under every . ϵ in Fig. 5.6, 
which also implies the diversity of our de-identified results. 

For data utility, Fig. 5.5a plots PSNR and SSIM vs. . ϵ, indicating that the visual 
similarity gets better as the privacy budget increases. Figure 5.5b shows that our face 
detection rate always remains at a high level, demonstrating that identity-agnostic 
computer vision technologies can still work on our processed faces. Specially, when 
the privacy budget . ϵ is small (i.e., a strong privacy protection), the subtle differences 
between the de-identified faces and the corresponding original ones can be perceived
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Fig. 5.6 Qualitative comparison of the influence of parameter . ϵ. The first column shows the 
original face images. The rest columns demonstrate anonymous face whose identity distance is 
closest to the mean distance under every . ϵ

by humans easily (e.g., different eyebrow shapes, different iris colors, and different 
lip shapes), while they still share a great visual similarity on the whole (Fig. 5.6). 

Furthermore, an unexpected issue is that the face detection rate decreases slightly 
as . ϵ increases. After research, we find the reason that partially severely blocked 
faces in test dataset can recover some facial features in the blocked area using our 
framework, resulting in the detection of originally undetectable faces. 

Figure 5.1 illustrates some de-identified results in pairs, where left is the 
original image and right is the de-identified result generated by our framework. It 
demonstrates that human identities are obfuscated in a perceptually natural manner; 
in the meantime, each pair of images still shares similar appearance, as well as the 
same expression and background. It is worth noticing that our results can well retain 
the unique attributes of characters, such as rare hairstyles, beards, glasses, and other 
accessories, which is hard to achieve in previous GAN-based methods. 

Based on a large number of experiments, we get some experience in choosing a 
suitable privacy budget value: If the image’s hue is light or the people’s expression 
is exaggerated, a smaller privacy budget should be chosen. In fact, we believe that 
setting the privacy budget to any positive number less than 10 can get an advanced 
anonymization result successfully, and we recommend the user to set their privacy 
budget between 0.5 and 7 to obtain anonymous face efficiently with quite well-
preserved appearance.
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5.4.5 Comparisons with Traditional Methods 

In this subsection, the following traditional methods are implemented: (1) Pixeliza-
tion: We cluster face region’s pixels that are close in 2D space and color space and 
then replace each cluster (.8 × 8, .16 × 16) with its average value. (2) Noise: We 
add Gaussian noise (. σ = 9, 49) on each pixel’s RGB value of the face region. (3) 
Blur: Following Ryoo et al. [74], we downsample the face region to extreme low 
resolution (.7 × 7, .19 × 19) and then upsample back. We set the privacy budget to 6. 
It can be seen that for the fairness of comparison, we select two parameters for each 
traditional method: One aims to make the identity distance close to our approach; at 
this time, the utility metrics are mainly compared, and the other aims to make PSNR 
or SSIM close to our method; at this time, the privacy metrics are mainly compared. 

Figure 5.7 shows the qualitative results. It is obvious that our approach achieves 
a great advantage in visual similarity as well as realism. The detailed quantitative 
results are shown in Table 5.1. Although PSNR and SSIM of our method are lower 

Fig. 5.7 Qualitative comparison with traditional methods. From left to right: original faces, faces 
de-identified by Pixelization (.4 × 4, .8 × 8), Noise (. σ = 9, 18), Blur (.8 × 8, .16 × 16), and faces 
generated by our method (. ϵ = 6 and . ϵ = 0.57) 

Table 5.1 Quantitative evaluation on CelebA-HQ datasets under different metrics 

. ID_DIS
Method CASIA VGGFace2 .PSR PSNR SSIM . FDR
Pixelization(.8 × 8) 0.8646 0.8993 0 26.735 0.7671 0.923 

Pixelization(.16 × 16) 1.1541 1.2195 0.017 23.926 0.7223 0.058 

Noise(. σ = 9) 0.3317 0.2723 0.002 23.831 0.8312 0.986 

Noise(. σ = 49) 1.1267 1.0280 0.012 14.370 0.5533 0.425 

Blur(.7 × 7) 0.8491 0.8380 0 27.405 0.806 0.888 

Blur(.19 × 19) 1.1102 1.1857 0.669 24.829 0.7719 0.518 

DeepPrivacy 1.0860 1.1829 0.961 21.012 0.7808 0.989 

Fawkes 0.7267 0.8585 0 35.898 0.9487 0.985 

Ours(.ϵ = 6) 1.1403 1.2012 0.908 24.640 0.8606 0.997 

Ours(.ϵ = 0.57) 1.1644 1.2307 0.967 23.909 0.8519 0.997
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than some traditional methods (i.e., Pixelization (.8 × 8), Pixelization (.16 × 16), 
Blur (.7 × 7), and Blur (.19 × 19)), we can see that (1) Pixelization (.8 × 8) and 
Blur (.7 × 7) get much smaller values than ours under the .ID_DIS metric and 
get zero under the .FDR metric, which means that their de-identification effect is 
almost nil when faced with advanced face verification technology. (2) Pixelization 
(.16 × 16) makes the value of .FDR drop sharply to 0.058, which means that its de-
identified faces can no longer be used in other identity-agnostic applications. This 
seriously damages the utility of face images. In addition, one of its privacy metrics, 
.PSR, is close to 0, which means that Pixelization (.16 × 16) is vulnerable to public 
face verification API. (3) Except for a slightly better PSNR value, Blur (.19 × 19) 
is inferior to our method under all other metrics, especially the .PSR and .FDR. 
Therefore, our method can not only effectively de-identify faces but also maintain 
the results’ utility. We perform best in preventing advanced face verification and 
maintaining the privacy-utility tradeoff. 

5.4.6 Comparisons with SOTA Methods 

In this subsection, we compare our IdentityDP with SOTA face de-identification 
methods. Among them, DeepPrivacy and Fawkes are trained and tested on CelebA-
HQ datasets. AnonymousNet and CIAGAN require pre-annotations and are trained 
on CelebA datasets, so we transfer our framework on CelebA and compare with 
them for fairness. We evaluate performance with these methods, respectively. 

(1) Comparisons with Attribute Manipulation-Based Anonymization: Facial 
attributes, including gender, age, haircut, and so on, should be an important 
reference for identifying faces’ identities, especially affecting human’s 
subjective judgment. Therefore, manipulating face attributes to make faces 
anonymous seems reasonable. AnonymousNet, a privacy-preserving attribute 
selection algorithm for facial image obfuscation, is a typical representative. 
Figure 5.8 shows the anonymous faces generated from our framework and 
those from AnonymousNet. Due to the change of several face attributes, the 
anonymous face generated by AnonymousNet is often visually different from 
the original face, especially when modifying gender, which is not conducive 
to the normal use of the images. In contrast, our method achieves significant 
improvement in visual similarity. As can be seen from Table 5.2, our method 
performs better under both privacy metrics and utility metrics, not to mention 
that AnonymousNet requires detailed data annotations. Moreover, it is worth 
noticing that although anonymous faces generated by AnonymousNet are 
visually very different from the original one, face verification service API can 
still judge them correctly, which suggests that general face attributes are not 
directly related to human identity. 

(2) Comparisons with Conditional Inpainting-Based Anonymization: Exposure of 
faces is the source of private information leakage. Therefore, some methods
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Fig. 5.8 Qualitative comparison of our method with AnonymousNet [15] and CIAGAN [24]. The 
top row shows original faces, and the second row and the third row show corresponding anonymous 
faces generated by AnonymousNet and CIAGAN. The last two rows show our results (. ϵ = 6 and . ϵ
= 0.57) 

Table 5.2 Quantitative evaluation on CelebA datasets under different metrics 

. ID_DIS
Method CASIA VGGFace2 .PSR PSNR SSIM . FDR
AnonymousNet 0.8896 1.0589 0.295 18.892 0.7192 0.892 

CIAGAN 0.8155 1.0271 0.945 21.863 0.7401 0.958 

Ours(.ϵ = 6) 0.9345 1.0918 0.905 23.353 0.8188 0.986 

Ours(.ϵ = 0.57) 0.9622 1.1176 0.961 22.7639 0.8005 0.987
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directly feed their networks with face-removing images as well as auxiliary 
annotations to automatically generate anonymous human faces. In this way, 
the generator never touches original faces, which ensures the removal of any 
privacy-sensitive information. DeepPrivacy is such a method which requires 
two annotations: A bounding box to identify the privacy-sensitive area and a 
sparse seven keypoints pose estimation of the face. It generates de-identified 
faces considering the original pose and image background. We compare our 
method with it. 
Figure 5.9 reports the difference of methods. We can see that the face generated 
by DeepPrivacy can maintain the facial pose well but is not visually similar to 
the original image. Besides, distortions and artifacts often occur. Our method 
produces more visual-pleasing anonymous faces which look similar to the 
original one. Table 5.1 shows quantitative results, and when . ϵ is set to 6, our  
method is slightly inferior to DeepPrivacy in terms of privacy protection but 
has remarkable data utility improvement; moreover, when . ϵ is set to 0.57, all 
metrics of our method outperform DeepPrivacy. 

(3) Comparisons with Conditional ID-Swapping-Based Anonymization: Since 
anonymizing a face is intended to hide its original identity, swapping the 
original ID with others becomes a straightforward idea. Conditioned on 
face landmark and masked background image of the input image, CIAGAN 
generates a new fake identity out of the input image to achieve anonymization. 
We compare images generated from our proposed framework and those from 
CIAGAN. From Fig. 5.8 we can see that the two methods produce comparable 
results, while our method enjoys a better visual similarity and less artifacts. 
Table 5.2 shows the quantitative results. When . ϵ is set to 6, CIAGAN protects 
privacy better from the perspective of .PSR; however, when setting . ϵ to 0.57, we 
outperform CIAGAN under all metrics and maintain a better visual similarity 
on the whole. 
Moreover, CIAGAN has some notable flaws: (1) It needs to borrow someone 
else’s identity as operation guidance, which may affect the privacy and security 
of the identity provider, (2) Faces de-identified by CIAGAN are visually similar 
to original ones only when the fake ID provider shares the same gender, a 
similar age, as well as similar makeup with the original ID owner, which makes 
it not very convenient to use in practice, (3) CIAGAN cannot maintain certain 
special attributes, such as glasses, heavy makeup, and thick beard, unless the 
identity provider also has, and (4) CIAGAN depends on landmark detection to 
provide pre-annotations, which tends to miss the face that has not been detected 
in the anonymization process. In contrast, our approach does not have these 
problems, since our method does not need the assistance of other identities, can 
retain the special attributes of original faces, and does not need pre-annotations. 
In summary, our method surpasses CIAGAN in privacy protection while 
maintaining a more similar appearance to their original ones, and our proposed 
method significantly performs better in terms of the utility metrics. 

(4) Comparisons with Adversarial Perturbation-Based Anonymization: De-
identified methods based on adversarial examples are continuously popular
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Fig. 5.9 Qualitative comparison of our method with DeepPrivacy [19] and Fawkes [14]. The top 
row shows original faces, and the second row and the third row show corresponding anonymous 
faces generated by DeepPrivacy and Fawkes. The last two rows show our results (. ϵ = 6 and . ϵ = 
0.57) 

because their anonymous results are almost the same as the original images. 
However, their performance depends largely on the accessibility of the target 
system’s internal parameters or special training on the target system. Fawkes, 
as one of the latest representatives, is selected as our comparison. 
Figure 5.9 demonstrates that Fawkes can generate faces that look extremely 
like the original one, except for a few strange spots that sometimes appear. We 
just provide a comparable result. However, Table 5.1 shows that Fawkes gets 
much smaller values than ours under the .ID_DIS metric and gets zero under 
the .FDR metric, which suggests that its de-identification effect is almost nil 
when faced with advanced face verification technology. In contrast, although 
our method suffers from less visual similarity, it works significantly better in
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Table 5.3 Additional 
quantitative evaluation with 
SOTA methods on LFW 
datasets 

FaceNet model 

Method CASIA VGGFace2 FID 

Original 0.965 . ± 0.016 0.986 . ± 0.010 0 

AnonymousNet 0.037 . ± 0.015 0.044 . ± 0.016 6.8479 

DeepPrivacy 0.029 . ± 0.012 0.039 . ± 0.014 2.7122 

CIAGAN 0.019 . ± 0.008 0.034 . ± 0.015 2.1756 

Fawkes 0.898 . ± 0.010 0.917 . ± 0.012 1.2681 
Ours(.ϵ = 6) 0.019 . ± 0.010 0.031 . ± 0.015 2.0201 

Ours(.ϵ = 0.57) 0.016 . ± 0.011 0.024 . ± 0.014 2.0437 

preserving face privacy, which is the most important for the de-identification 
task. 

(5) Additional Discussion: To make the comparison more convincing and fairer, 
we follow the evaluation protocol that has been used in CIAGAN and add two 
experiments with the SOTA methods to evaluate the performance of privacy and 
utility, respectively. 

Firstly, we use the evaluation method for privacy protection, which is conducted 
on the LFW benchmark. In this experiment, we employ two FaceNet identification 
models (pretrained on CASIA-WebFace [69] and VGGFace2 [70]), and the main 
evaluation metric is the true acceptance rate. Table 5.3 presents the results on de-
identified LFW image pairs for a given person, while the de-identification method 
is applied to the second image of each pair. It can be seen that all the SOTA 
methods can let the true positive rate drop from almost 0.99 to less than 0.05 except 
Fawkes. In particular, when . ϵ is 0.57, our method yields the lowest true positive rate 
when two FaceNet models pretrained on CASIA dataset and VGGFace2 dataset are 
employed. 

Then we evaluate the utility of the images by using the FID score on LFW 
dataset, as it can measure the distance between the generated distribution and the 
real distribution. The results are shown in Table 5.3. Among the methods that can 
effectively drop the true acceptance rate and well protect the identity information, 
our method achieves the best FID score. It demonstrates that our de-identified 
images exhibit a closer similarity to the original ones in terms of data distribution, 
which is consistent with our intuitive expectation. 

Besides, there is no formal and strict privacy guarantee provided by the SOTA 
privacy protection methods, while the privacy level of our proposed IdentityDP 
is clearly defined and rigorously guaranteed by the DP criterion. Therefore, our 
method has the advantage of providing provable and strict privacy guarantee. 

To better evaluate the visual perception of the results generated by our method, 
we also conduct a user study to assess the quality of identity anonymization for 
human observers of the proposed model. Given an original image, two de-identified 
images are generated using the two recommended privacy budgets (6 and 0.57) 
to form two image pairs in total. For each image pair, the participants are asked 
to evaluate whether they are the same person. We provide four options, namely
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0 100 200 300 400 500 600 700 800 

e=6 

e=0.57 

different person uncertain (more like different person) 

uncertain (more like same person) same person 

Fig. 5.10 Results of user study under two recommended privacy budget . ϵ values 

Table 5.4 Face detection rate on CelebA-HQ and CelebA datasets by using MTCNN 

Dataset CelebA-HQ CelebA 

Method [19] [14] Ours(. ϵ=6) Ours(. ϵ=0.57) [15] [24] Ours(. ϵ=6) Ours(. ϵ=0.57) 

.FDR 0.999 1 1 1 0.978 0.995 0.997 0.999 

“different person,” “uncertain (more likely different person),” “uncertain (more 
likely the same person),” and “same person.” We present 100 image pairs from 50 
original images to 15 human subjects and collect results. One thousand five hundred 
votes are collected, and the number of votes under two recommended privacy 
budgets is shown in the form of bar chart. The results in Fig. 5.10 demonstrate 
that most users can perceive the change in identity, which indicates that the de-
identification performance of our method is good. Moreover, using the smaller 
recommended privacy budget can better ensure face anonymization for human 
observers. 

To be more comprehensive, we add an experiment that calculates the face 
detection rate .FDR by using a popular advanced detector, MTCNN [75]. Table 5.4 
presents the results. It can be seen that there is an overall increase in .FDR, and our 
method achieves the best subsequent utility guarantee, i.e., the de-identified images 
can still be used in subsequent identity-agnostic computer vision applications. 

5.4.7 Generalization Ability 

Our IdentityDP provides great generalization to various face images. In previous 
experiments, it has been proved by showing remarkable qualitative and quantitative 
results on CelebA, a dataset that our IdentityDP has never trained on before. To 
further demonstrate the robustness of our method, we apply our framework to face 
images from the very difficult inputs of [76]. As can be seen in Fig. 5.11, our method 
is robust to very challenging illuminations.
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Fig. 5.11 Our de-identification results on examples labeled as challenging or very challenging in 
the NIST Face Recognition Challenge [76]. The first row shows original faces, and the following 
row shows our corresponding de-identified results 

Fig. 5.12 Our anonymization results on challenging artistic portraits. The first and the third row 
show the artistic portraits, while the second and the fourth row show our corresponding anonymous 
results 

In addition, we apply our framework on artistic portraits. All artworks are taken 
from Wikiart.org. Figure 5.12 shows the interesting results, illustrating that faces in 
different styles are anonymized successfully without causing significant distortions 
or artifacts.
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5.4.8 Computational Overhead 

In this subsection, we evaluate our computational overheads for anonymizing faces. 
IdentityDP adds little overhead for processing, as the only additions are a random 
noise tensor. On an NVIDIA GTX 1080 Ti, IdentityDP takes on average 0.329s per 
image. The low computational overhead is beneficial to process a large amount of 
face images. 

5.5 Conclusion and Future Work 

In this chapter, we propose the IdentityDP framework that combines DP mecha-
nisms with DNNs to achieve image privacy protection for the first time. Our frame-
work consists of three stages: deep representations disentanglement, .ϵ-IdentityDP 
perturbation, and image reconstruction. In our framework, DP perturbation is 
directly added on to the identity representation to ensure privacy protection, while 
the attribute representation is unchanged and it preserves visual similarity well. 
Furthermore, the adjustable privacy budget guarantees the diversity of anonymiza-
tion results. Experiments demonstrate the effectiveness of our framework in terms 
of privacy protection and image utility and produce satisfactory results compared 
with the traditional and SOTA methods. Moreover, our framework has a good 
generalization ability. In the future, we will further explore the tradeoff between 
user privacy and authorized use of work. In addition, extending this work to videos 
and achieving temporal consistency would be an interesting direction. 
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Chapter 6 
Personalized and Invertible Face 
De-identification 

6.1 Introduction 

Face images are generally considered to contain abundant private information. The 
earliest techniques obfuscated privacy-sensitive information by pixel-level process-
ing which has been proved vulnerable and has poor effects on utility [1]. Recent 
GAN-based methods [2, 3] improve the quality and utility of de-identification 
results remarkably. What is more, the research on disentangled representations [4, 5] 
contributes to transforming the identity without changing the other facial attributes, 
so that the de-identified results look similar to the original. 

However, most de-identification methods only focus on the protection phase. 
Considering that when we share pictures with close friends or in some specific 
scenarios like criminal investigations, it is hoped to use the original image instead 
of the de-identified. Therefore, how to restore the original image is also a critical 
task. Moreover, notice that the tradeoff between privacy and utility poses a major 
challenge for all privacy-preserving methods, and different levels of privacy are 
required in different scenarios. In summary, we believe that an ideal comprehensive 
de-identification method should (a) avoid deteriorating nonsensitive information 
like facial expression, behavior, and so on, (b) control the degree of privacy 
protection according to different application scenarios, and (c) be able to restore 
the original image under security conditions. 

To achieve the above targets, this chapter proposes a personalized and invertible 
face de-identification method, in which the user can set a password and the privacy 
level for a given face image. The main framework can be summarized in the 
following three stages: (1) extract disentangled identity and attributes to make sure 

Main contents of this chapter have been published in “Cao, J., Liu, B., Wen, Y., Xie, R., & Song, 
L. (2021). Personalized and invertible face deidentification by disentangled identity information 
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the generated results share the same attributes and visual similarity with the input, 
(2) calculate the protected or restored identity with the identity modification module 
based on the password p and privacy level parameter d, and (3) implement the image 
reconstruction. 

In summary, our main contributions are as follows: 

• A general framework that can transform identity of the input while ensuring the 
other attributes keep similar. 

• Personalized de-identification results can be generated with the user-specific 
password, and the degree of identity variation can be controlled. 

• The original image can be restored if and only if the corresponding encryption 
password is provided. 

• Experimental results show that compared with existing methods, our approach 
can generate de-identified results with better performance of both privacy and 
utility, in addition to better quality recovery results. 

6.2 Problem Formulation 

Our identity conversion algorithm mainly possesses de-identification . F and restora-
tion .F−1, which both require the input of source face image X, the user-specific 
password p, and a privacy level parameter d . The password can determine the 
direction of identity variation and d can control the variation degree. Inspired by 
Gu et al. [6], we mathematically formulate our problem in this section. 

De-identification In order to achieve the effectiveness of identity protection, we 
aim that the protected image will have different identity information from the 
original, which can be formulated as 

.I (F(X, p, d)) /= I (X), (6.1) 

where .F(X, p, d) indicates the de-identified X with parameters p and d , . I (X)

represents the identity of image X. Considering the utility of de-identified results, 
we hope that .F(X, p, d) looks similar to X as well as the face region and keypoints 
can still be detected by the face detector. 

Diversity We can set different passwords p to generate diverse de-identification 
results, which can promote the security of identity protection. 

.I (F(X, p1, d)) /= I (F(X, p2, d)), p1 /= p2. (6.2) 

Controllability We can control the similarity between the de-identified image and 
the original by the adjustable parameter d as 

.D(F(X, p, d1),X) > D(F(X, p, d2),X), d1 > d2, (6.3)
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where .D(X, Y ) means the identity distance between image X and Y , and the larger 
distance indicates lower similarity. 

Recoverability If the user takes the de-identified result .F(X, p, d) and correspond-
ing password p and d as input, the origin image X can be restored successfully, 
which can be formulated as 

.F−1(F(X, p, d), p, d) = X̂, (6.4) 

.I (X) = I (X̂). (6.5) 

However, if the attacker tries to restore the image without the right identity 
encryption password, he/she can only get the image with another identity instead 
of the original one. 

.F−1(F(X, p1, d), p2, d) = Ŷ , p1 /= p2, (6.6) 

.I (X) /= I (Ŷ ). (6.7) 

In addition to the above, we also expect that both the de-identified and the 
restored have high distinct image quality and satisfactory visual perception. 

6.3 Our Approach 

The framework of training process is shown in Fig. 6.1 and that of protection process 
and recovery process is presented in Fig. 6.2, which mainly consists of two encoders 
.Eid and .Eattr , an identity modification module M , and a generator G. In the first 

Generator 

Multi-level Attributes Encoder 

Identity Encoder 

Identity 

... 

... 

... 

... 

Training Process 

Fig. 6.1 The framework of training process, which includes the identity encoder, the multilevel 
attributes encoder, and the generator
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Fig. 6.2 The framework of protection process and recovery process 

stage, we extract the image representations and disentangle them into identity . zid

and attributes .zattr . Second, we calculate the protected identity .znew or the restored 
. ̂zid by the identity modification module M . Finally, G generates de-identified results 
based on .znew and .zattr (or the restored based on . ̂zid and .zattr ). Each part will be 
described in detail in this section. 

6.3.1 Network Architecture 

6.3.1.1 Identity Encoder 

Similar to most research on disentangled representations of identity and attributes, 
we use a pretrained face recognition model as the identity encoder . Eid , and the 
identity representation . zid is taken from the last feature vector before the final fully 
connected layer. 

6.3.1.2 Attribute Encoder 

In order to retain better details of attributes like expression, pose, illumination, and 
so on, we design to represent the attribute representations as multilevel feature maps. 
We employ a U-Net-like structure and define the feature vectors obtained from each 
layer of the U-Net decoder as attributes embedding. 

.zattr =
{
z1attr , z

2
attr , · · · zn

attr

}
. (6.8) 

6.3.1.3 Identity Modification Module 

The identity modification module mainly edits the identity embedding with latent 
space manipulation. Most of the state-of-the-art (SOTA) face recognition or face 
verification models such as ArcFace [7], CosFace [8], and SphereFace [9], convert 
identity features to the hyperspherical space and use cosine similarity based on
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angles. This has motivated us to conclude that rotating the identity vector is a more 
effective way to change identity information compared with other vector operations 
like translation. Additionally, considering the feasibility of restoration, we hope 
to introduce a definite modification process instead of introducing randomness 
like noise. Therefore, we realize de-identification process . znew = M(zid , p, d)

or restoration process .ẑid = M−1(znew, p, d) by changing the phase of identity 
embedding. In more detail, during the protection process, we first perform nor-
malization on . zid and extract a reference vector . zr from the pre-defined reference 
identity vector library. Each reference identity . zr is obtained by randomly selecting 
k different identities from the training set to combine and normalize, which ensures 
that there is no real corresponding identity to avoid identity leakage. Then the 
component vector . z90 that is orthogonal to . zid in . zr will be decomposed and form a 
set of orthogonal bases with . zid . Through the combination of the basis vectors set, 
the new identity representation .znew after . zid rotation with the degree of . θ on the 
hyperplane can be formulated as 

.znew = zid cos θ + z90 sin θ, (6.9) 

where .z90 determines the direction of rotation and .znew may correspond to the 
identity of an unreal person. Since . z90 is a component vector of . zr , we can introduce 
the mapping .zr = f (p), .θ = g(d) to control of the direction and degree of identity 
variation with p and d . In the recovery phase, we can calculate the original identity 
with the inverse operations, and more detailed calculations will be introduced in 
Sect. 6.3.4. 

6.3.1.4 Generator 

We are required to design a network to implement image reconstruction based 
on .zid and .zattr . Previous researches [10] have shown that simple embedding 
concatenation may result in relatively fuzzy results. To solve the problem, Li [11] 
proposed novel Adaptive Attentional Denormalization (AAD) layers to improve 
feature integration in multiple levels. We employ cascaded n-AAD Residual Blocks 
in the generator to adjust attention regions of .zid and .zattr so that they can 
participate in synthesizing different parts. 

6.3.2 Training Process 

In training process, the identity encoder .Eid is frozen while the others are trainable, 
where attributes encoder .Eattr is trained to embed attribute representations disen-
tangled from . zid , and the generator G is trained to reconstruct the original image 
with . zid and .zattr .
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Given an input image X, the identity representations can be obtained as 

.zid = Eid(X). (6.10) 

We use identity consistency loss .Lid to make sure the identity of generated image 
.X' = G(zid , zattr ) still keeps the same. 

.Lid = 1 − Eid(X') · Eid(X)

‖Eid(X')‖2 · ‖Eid(X)‖2 . (6.11) 

We also define attributes consistency loss .Lattr which can be formulated as 

.Lattr = 1

2

n∑
k=1

∥∥∥zk
attr (X

') − zk
attr (X)

∥∥∥
2

2
. (6.12) 

If the restored result . X' is generated with the same .zid and .zattr , it should 
be as similar to the original image as we can. We set pixel-level . L2 distance as 
reconstruction loss .Lrec, 

.Lrec = 1

2
‖X' − X‖22. (6.13) 

We take advantage of adversarial learning to train the framework and introduce 
adversarial loss .Ladv to constrain the generated results indistinguishable from real 
images. To promote the image quality, it is necessary to expand the perception range 
of the discriminator, so we adopt m multiscale discriminators [12] for different 
resolution versions of the generated image . X'

m. 

.Ladv(X
'
m,Xm) = log (D(Xm)) + log

(
1 − D(X'

m)
)
. (6.14) 

Taking the above losses into account, the total loss function can be formulated as 

.Ltotal = Ladv + λ1Lid + λ2Lattr + λ3Lrec, (6.15) 

where . λ1, . λ2, and . λ3 are the model tradeoff parameters. 

6.3.3 Protection Process 

In the protection phase, our approach takes the original image X, user-set password 
p, and privacy level parameter d as input. The goal is to generate a specific de-
identification image with p and d whose identity has been protected while other 
attributes remain the same.
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For the original image X, we firstly get identity embedding .zid = Eid(X) and 
attributes embedding .zattr = Eattr (X). The de-identification identity representation 
.znew = M(zid , p, d) can be formulated as 

.M(zid , p, d) = z̄id · cos g(d) + z90 · sin g(d), (6.16) 

where 

.z90 = f (p) − (z̄id · f (p)) · z̄id (6.17) 

and . ̄zid represents the normalized . zid . 
Finally, we generate the de-identification result as 

.F(X, p, d) = G(znew, zattr ). (6.18) 

6.3.4 Recovery Process 

In the recovery phase, our approach can restore the de-identified image . F(X, p, d)

to the original image X only when the right password is provided, which mainly 
differs from the protection process in the identity modification module M . Consid-
ering that when the password p is correct and d is not much different, the restored 
result of the same identity with the original image can still be obtained, so here we 
focus more on the correctness of passwords. 

For the de-identified image .F(X, p, d), we extract .znew and .zattr with the 
pretrained encoders. The restored identity embedding .ẑid = M−1(znew, p, d) can 
be calculated as 

.M−1(znew, p, d) = znew − f (p) · sin g(d)

cos g(d) − A · sin g(d)
, (6.19) 

where 

.A = cos2 g(d) − (znew − f (p) · sin g(d)) · znew

sin g(d) · cos g(d)
(6.20) 

and .znew = Eid(F(X, p, d)). In fact, .A = z̄id · zr , . ̄zid is the normalized . zid =
Eid(X). The restored image . X̂ can be formulated as 

.X̂ = G(ẑid , zattr ). (6.21)
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6.4 Experiments 

6.4.1 Implementation Details 

Datasets We train the network using CelebA-HQ [13] dataset, which is derived 
from CelebA [14] containing 30k upscale images of celebrity faces. Randomly 
choose 27k images for training while the others for test. Each image has been 
aligned and cropped to 256. ×256 covering the whole face region. In addition, we 
also test the generalization ability on FFHQ [15] and CASIA-WebFace [16]. 

Experimental Settings We use the pretrained ArcFace [7] as identity encoder Eid 
and set the number of attribute representations n = 8 in Eq.  (6.8). We train our 
network using Adam with β1 = 0, β2 = 0.999 and set the learning rate as 4 × 
10−4. The tradeoff parameters in Eq. (6.15) are set to λadv = 0.1, λid = 5, and 
λattr  = λrec = 10. We define p as a six-digit password, each reference identity zr 
is calculated by random k = 10 different identities, and define f (p)  as one-to-one 
mapping. Based on testing on CelebA-HQ and considering both privacy protection 
effectiveness and image quality and it cannot be restored when θ = 90◦, we define 

the relationship between θ and d as g(d) =
{
70 + d × 5 d ∈ [0, 4), 
70 + (d + 1) × 5 d ∈ [4, 9]. 

6.4.2 Evaluation Results 

6.4.2.1 De-identification 

Different Passwords We evaluate the diversity of our approach by generating 
different de-identification results with different passwords. The qualitative results 
are shown in Fig. 6.3. It can be seen that our method can transform the identity into 
different identities in a large range which is determined with the password p. 

Different Privacy Level We evaluate the controllability by testing with different 
privacy levels d and present the qualitative results in Fig. 6.4. When d increases, 
the identity difference expands, while the de-identified results can still share a 
similar appearance with the original in general, and most of them have successfully 
deceived the face verification model. We will provide the quantitative evaluation in 
the following part. 

Quantitative Evaluation We evaluate the performance of our approach from the 
perspectives of both privacy protection and image utility. Here we present the 
definition or explanation of the metrics we use. 

(1) Privacy Protection: Almost all face verification models judge whether two 
images have the same identity by comparing identity embedding distance, so
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Fig. 6.3 Various de-identification results. The leftmost column represents the original image, and 
the last five columns present diverse de-identified results with different passwords. Particularly, the 
images of each column share the same password 

Fig. 6.4 The leftmost column represents the original image and the rest indicate the de-identified 
results with different privacy level (from left to right, the privacy level parameter d increases from 
0 to 9)  

that we define identity distance (Id-dis) and successful protection rate (SR) 
for protection effects evaluation. Id-dis indicates the distance between identity 
vectors eid extracted from the face recognition model, which can be formulated 
as 

.Id − dis = D(eid(X), eid(F(X, p, d)). (6.22)
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SR means the proportion of successful de-identification as 

.SR = 1 − 1

N

N∑
i=1

fver (X,F(X, p, d)), (6.23) 

when Id-dis > τ , it considers two identities different as fver = 0 and 
otherwise fver = 1, and N is the number of testing. We respectively use 
the Face Recognition library, FaceNet trained on CASIA, and FaceNet trained 
on VGGFace2 for evaluation where the specific forms of D are all Euclidean 
distance. 

(2) Image Utility: We define the rate at which faces in de-identified images can 
be detected as face detectability (DR), as shown  in  Eq.  (6.24), to measure the 
utility for computer vision tasks. 

.DR = 1

N

N∑
i=1

fdet (F(X, p, d)); (6.24) 

if the face can be detected, fdet = 1 and otherwise fdet = 0. We also detect 
face region and landmarks to calculate the pixel-level distance (pixel-dis) from 
the original image. 

We randomly select several images from CelebA-HQ and de-identify them with 
random passwords p and privacy levels d. The privacy evaluation compared with 
DeepPrivacy [2] and Gu et al. [6] is represented in Table 6.1. It can be concluded 
that our method is more effective for identity protection with both larger identity 
distance and higher successful rate. We also generate the de-identification results 
using random passwords with each privacy level, and the variation of identity 
distance with d is shown in Fig. 6.5. 

In Table 6.2, we apply computer vision algorithms on the de-identified images 
and compare the difference of pixel-level in face region, landmarks, eyes, nose, and 
mouth between the de-identification results and the original, as well as the detection 
rate of the de-identified. Landmarks indicates the mean distance of the total 68 
keypoints, while Eyes/Nose/Mouth represents that of keypoints corresponding to 
each facial area. The utility evaluation proves that our method can guarantee the 
consistency of the face region and landmarks better, and most de-identified faces 

Table 6.1 Privacy evaluation of de-identification results, where the values in the table indicate 
identity distance and successful de-identified rate Id-dis/SR. We choose the threshold of Face 
Recognition Library as τ = 0.6 and the threshold of FaceNet as τ = 1.1 according to [17] 

Face recognition FaceNet (CASIA) FaceNet (VGGFace2) 

DeepPrivacy [2] 0.74623/0.939 1.19684/0.734 1.22889/0.816 

Gu et al. [6] 0.82234/0.961 1.14419/0.704 1.16245/0.695 

Ours 0.79195/0.975 1.24421/0.913 1.27270/0.928
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Fig. 6.5 Identity Distance(Id-dis). Larger distance illustrates better de-identification effects. When 
identity distance exceeds the threshold, the face verification model believes the identity has been 
varied 

Table 6.2 Utility evaluation of de-identification results. The face region is detected with 
OpenCV, and landmarks are detected with dlib 

Pixel-dis↓ 
DR↑ Face Landmarks Eyes Nose Mouth 

DeepPrivacy [2] 1.0 5.005 2.506 1.502 1.799 3.288 

Gu et al. [6] 0.8585 0.925 2.346 1.810 1.906 2.139 

Ours 0.9973 0.225 1.969 1.236 1.546 1.900 

can be detected, which proves that it guarantees better utility for identity-agnostic 
computer vision tasks. We also show the tradeoff between privacy and utility in 
Fig. 6.6. Increasing the level of privacy protection will increase the pixel difference, 
which means the utility of the image will be reduced. 

As shown in Fig. 6.7, compared with existing de-identification methods, our 
approach can retain more similarities with the original. Different from the generative 
adversarial network (GAN) conditioned on passwords proposed by Gu et al. [6], 
which needs to retrain the network for different passwords, our encryption process 
is relatively independent of the deep generative network, so that the password 
form can be defined more flexibly, the complexity will be reduced greatly, and 
the scope of identity changes can be infinitely expanded. Different from k-Same 
family algorithms [18–20] which can provide privacy guarantees and control privacy 
protection levels for the entire datasets, our method can control the extent of identity 
variation for each image.
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Fig. 6.6 The tradeoff between privacy and utility of the de-identified results. The abscissa 
represents the identity distance measured by the Face Recognition library, and the ordinate is the 
pixel difference of face region and keypoints 

Fig. 6.7 De-identification results compared with existing methods, where ***(b), (c), and (d) are 
traditional methods and (e) and (f) are based on deep learning. From left to right: the original 
image, Gaussian Blur (s=8), pixelation (8×8), Gaussian noise (σ=15), DeepPrivacy [2], Gu et al. 
[6], and our de-identified results with the minimum and maximum privacy level d 

6.4.2.2 Recovery 

The restored results with correct or wrong passwords are presented in Fig. 6.8. When 
the attacker tries to recover the de-identified image with the wrong passwords, 
a good quality face image can still be obtained, but not the original identity 
information, which may confuse him/her and achieve more reliable protection.
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Fig. 6.8 Recovery results. X: the original image, .p1,2: two different de-identified results, .pm|pn: 
use . pn to restore the image de-identified with . pm, and . X̂: the correct recovery 

While our framework is trained on CelebA-HQ, the generalization results tested 
on FFHQ and CASIA-WebFace are shown in Fig. 6.9, and it comes to the conclusion 
that our approach can apply to a wider range of images. In order to keep consistent 
with the model input, we first convert all test images to the size of 256. ×256 before 
feeding the model. The small artifacts are considered due to image distortion caused 
by interpolation or misalignment. 

We compare de-identification results, wrong recovery, and correct recovery 
with [6] on both CelebA-HQ and CASIA shown in Figs. 6.10 and 6.11, which 
shows our de-identified results can retain more similarity with the original. Identity 
evaluation of incorrect and correct recovery are shown in Table 6.3, where the 
recovery is effective when using correct password, while wrong passwords will 
generate a different identity with a high probability. We evaluate the recovery 
quality in Table 6.4 using LPIPS (learned perceptual image patch similarity) [21] 
distance to measure perceptual similarity, PSNR (peak signal-to-noise ratio) and 
MAE (mean absolute error) to measure distortion at the pixel level, and SSIM 
(structural similarity) to measure the structure similarity. We compare our approach 
to three traditional methods and the method proposed by Gu et al. [6]. Specially, we 
deblur by Wiener filter, remove pixelation by bilinear interpolation, and denoise by 
nonlocal averaging. Based on the comparison, the restored images obtained by our 
method are the closest to the original with high image quality.
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Fig. 6.9 FFHQ and CASIA generalization results with the model trained on CelebA-HQ. The 
upper two lines are from FFHQ, while the lower are from CASIA. X: original image, .p1,2,3: the  
de-identified results with three different passwords, . Ŷ : wrong recovery, and . X̂: correct recovery 

Fig. 6.10 Compare results from CelebA-HQ with Gu et al. [6]. For the same input image, the 
upper row is our results, and the lower row is the results generated by Gu et al. [6]
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Fig. 6.11 Compare results from CASIA-WebFace with Gu et al. [6]. For the same input image, 
the upper row is our results, and the lower row is the results generated by Gu et al. [6] 

Table 6.3 Id-dis/SR evaluation for incorrect/correct recovery 

Face recognition FaceNet (CASIA) FaceNet (VGGFace2) 

Incorrect recovery 0.794/0.904 1.243/0.854 1.257/0.879 

Correct recovery 0.228/0.035 0.368/0.035 0.401/0.035 

Table 6.4 Comparison of the 
restored image quality 

LPIPS.↓ PSNR.↑ SSIM.↑ MAE. ↓
Blur 0.242 28.396 0.802 0.026 
Pixelation 0.447 23.159 0.671 0.040 

Noise 0.264 22.163 0.701 0.046 

Gu et al. 0.186 27.602 0.827 0.029 

Ours 0.062 27.501 0.902 0.031 

6.5 Conclusion 

In this chapter, we propose a personalized and invertible de-identification method 
for privacy preservation. Our method first disentangles the representations of 
identity and attributes, encrypts or restores identity with latent space manipulation 
based on the password and the privacy level parameter, and finally reconstructs 
the de-identified or recovery image. In the protection phase, our approach can 
generate personalized de-identification results with different passwords and control 
the identity distance from the original by the privacy level parameter. In the recovery 
phase, our approach can restore if and only if the corresponding password is given,
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while the image with another identity will be generated when the attacker tries the 
wrong passwords. Experiments demonstrate the satisfactory performance in privacy 
protection and image utility of the de-identified results, as well as the quality of 
the restored, compared with the traditional or SOTA methods. Generalizing the 
proposed framework to handle face images of different resolutions and different 
poses is part of our future work. Besides, the de-identification in videos is also a 
problem worthy of research. 

References 

1. N. Vishwamitra, B. Knijnenburg, H. Hu, Y. P. Kelly Caine et al., Blur vs. block: Investigating 
the effectiveness of privacy-enhancing obfuscation for images, in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition Workshops (2017), pp. 39–47 

2. H. Hukkelås, R. Mester, F. Lindseth, DeepPrivacy: a generative adversarial network for face 
anonymization, in Advances in Visual Computing (Springer, Berlin, 2019), pp. 565–578 

3. M. Maximov, I. Elezi, L. Leal-Taixé, CIAGAN: conditional identity anonymization generative 
adversarial networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (2020), pp. 5447–5456 

4. M. Gong, J. Liu, H. Li, Y. Xie, Z. Tang, Disentangled representation learning for multiple 
attributes preserving face deidentification. IEEE Trans. Neural Netw. Learn. Syst. 33(1), 244– 
256 https://doi.org/10.1109/TNNLS.2020.3027617 

5. Y. Nitzan, A. Bermano, Y. Li, D. Cohen-Or, Face identity disentanglement via latent space 
mapping. ACM Trans. Graph. 39, 1–14 (2020) 

6. X. Gu, W. Luo, M. S. Ryoo, Y. J. Lee, Password-conditioned anonymization and deanonymiza-
tion with face identity transformers, in European Conference on Computer Vision (2020) 

7. J. Deng, J. Guo, N. Xue, S. Zafeiriou, ArcFace: additive angular margin loss for deep face 
recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) (2019) 

8. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, CosFace: large margin 
cosine loss for deep face recognition, in 2018 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (2018), pp. 5265–5274 

9. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, SphereFace: deep hypersphere embedding 
for face recognition, in 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) (2017), pp. 6738–6746 

10. J. Bao, D. Chen, F. Wen, H. Li, G. Hua, Towards open-set identity preserving face synthesis, in 
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 6713– 
6722 

11. L. Li, J. Bao, H. Yang, D. Chen, F. Wen, FaceShifter: towards high fidelity and occlusion aware 
face swapping (2019). arXiv preprint arXiv:1912.13457 

12. W. Tang, G. Li, X. Bao, T. Li, MSCGAN: multi-scale conditional generative adversarial 
networks for person image generation, in 2020 Chinese Control And Decision Conference 
(CCDC) (2020), pp. 1440–1445 

13. T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs for improved quality, 
stability, and variation, in International Conference on Learning Representations (2018). 
https://openreview.net/forum?id=Hk99zCeAb 

14. Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in Proceedings of 
International Conference on Computer Vision (ICCV) (2015) 

15. T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial 
networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR) (2019)

https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://doi.org/10.1109/TNNLS.2020.3027617
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb


References 125

16. D. Yi, Z. Lei, S. Liao, S. Z. Li, Learning face representation from scratch (2014). ArXiv, 
abs/1411.7923 

17. F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition 
and clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2015) 

18. R. Gross, E. Airoldi, B. Malin, L. Sweeney, Integrating utility into face de-identification, in 
PET’05 Proceedings of the 5th international conference on Privacy Enhancing Technologies 
(2005), pp. 227–242 

19. R. Gross, L. Sweeney, F. De la Torre, and S. Baker, Model-based face de-identification, in 2006 
Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) (2006), pp. 
161–161 

20. E. Newton, L. Sweeney, B. Malin, Preserving privacy by de-identifying face images,. IEEE 
Trans. Knowl. Data Eng. 17(2), 232–243 (2005) 

21. R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of 
deep features as a perceptual metric, in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) (2018)



Chapter 7 
High Quality Face De-identification with 
Model Explainability 

7.1 Introduction 

Concerns about individual private information disclosure are growing with the 
development of computer vision techniques and image understanding applications. 
Face de-identification is a process that aims to remove all identification information 
of the person from an image, while maintaining as much information on the action 
and its context [1]. Ideally, while the identity information is protected, other identity-
agnostic features (e.g., pose, expression, and background) will not be affected. 
The de-identified images can still be used for identity-agnostic tasks, such as 
face detection and expression recognition. Accordingly, great efforts are paid to 
achieve an effective privacy–utility tradeoff [2–9]. Face de-identification can allow 
individuals to share personal portraits with confidence, while eliminating some 
ethical and legal restraints on facial data releasing. 

Early face de-identification methods carry out various obfuscation operations 
on detected private area, which seriously impair the image’s ornamental value and 
are not reliable when facing advanced face recognition tools [10]. K-same family 
methods [11–13] are once hot, but they are restrained by their strict using conditions. 
At present, there are two main types of methods. One kind uses adversarial noise 
to generate de-identified faces that can be visually indistinguishable from the 
original one [14–16]. However, they are highly dependent on the accessibility to 
target systems and lack generalization ability. The other kind exploits GANs to 
disentangle, manipulate, and finally protect identity features in the latent spaces 
[2–9]. These methods make great efforts to achieve the balance between privacy 
and utility through a network in the manner of an adversarial training. The results 
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depend heavily on the degree of latent space disentanglement, which is neither 
clear nor satisfactory. Besides, most existing methods are designed in constrained 
scenarios and do not work well with various poses and expressions, which also need 
to be improved. 

Unlike previous works, we aim to break away from this traditional privacy– 
utility tradeoff in face de-identification studies and instead provide a reliable 
and explainable method of protecting individual identities. Our inspiration for 
this approach stems from the observation that wearing a human skin mask can 
effectively change one’s identity. This realization highlights that a convincing de-
identification requires substantial changes to the overall geometry of the facial 
features such as eyes, nose, ears, mouth, and facial bones. Such transformations 
are practically impossible to achieve with mere makeup or even surgical procedures 
(since that surpass the physical limits of the human body). In contrast, hairstyle, 
accessories, and skin color are examples of identity-agnostic features that can be 
easily altered by a stylist. However, they significantly impact the human perception 
of visual similarity between two faces. Thus, we contend that protecting privacy and 
retaining utility can be two distinct objectives that necessitate different strategies. By 
separating these objectives, we can focus on each objective independently to achieve 
better results (Fig. 7.1). 

Our proposed solution, IDeudemon, adopts the “divide and conquer” strategy to 
achieve privacy protection and utility preservation in two distinct steps. In the first 
step, we use a 3D parametric modelling approach to estimate the facial geometry 
and obfuscate the face’s 3D identity representation to conceal the real identity. 
Specifically, we begin by leveraging a monocular face reconstruction network to 
approximate the coarse 3D parameters of the given face. Using this initialization, 
we employ an NeRF model to calculate the face’s accurate 3D parameters (ID 
code, appearance code, and camera code). Subsequently, we apply a protective 
perturbation to the real ID code to get the protected ID code. Finally, the NeRF 
model renders an identity-protected fitted face, which has a significant change in 
the facial features’ geometric structure. 

In the second step, we focus on producing high quality images based on the fitted 
face, which is neither natural nor realistic. We first use face parsing maps to preserve 
the identity-agnostic features and maintain the visual similarity with the original 
image as much as possible. Then, we train a GAN to restore the de-identified face 
with realistic details by referring to generative facial priors. Finally, we can acquire 
high quality visual-pleasing de-identified results. 

Our main contributions are described as follows: 

• We propose IDeudemon, a novel two-step NeRF-based method for face de-
identification. Instead of achieving privacy–utility tradeoff in one network 
adversarially, for the first time, we divide privacy protection and utility preser-
vation into two separate steps. IDeudemon can protect identity without weighing 
the image utility at the same time and has good explainability [17]. 

• We confuse the real identity by a 3D parametric NeRF model, which modifies 
the facial geometry and changes the identity. Hence, our method has excellent
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Fig. 7.1 IDeudemon for face de-identification at different resolutions. (a) 256 . × 256, (b) 512 
. × 512, (c) 1024 . × 1024. In each pair, left is the original image and right is the corresponding 
de-identified result. The results show that face identities are changed in a perceptually natural 
manner, while all other characteristics (hairstyles, accessories, backgrounds, poses, expressions, 
etc.) remain the same 

privacy performance and this process is explainable. The definition of the 
identity refers to the mature 3D prior from 3DMMs and is refined by the NeRF 
model. This verified disentangled identity code makes IDeudemon well preserve 
nonidentity features, such as expression, pose, and illumination. 

• We propose a second step to intently restore high quality faces based on the fitted 
results of NeRF. We devise visual similarity assistance to retain identity-agnostic 
features and train a GAN to generate realistic facial details. These designs lead 
to good utility performance.
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• Experimental results on two diverse face datasets (ethnicity, age, etc.) have 
shown the effectiveness of our proposed IDeudemon. In particular, our method 
brilliantly maintains the original poses and expressions and can achieve face de-
identification on megapixels. 

7.2 Related Work 

7.2.1 3D Monocular Face Reconstruction 

3D monocular face reconstruction refers to reconstructing the 3D model of a face 
from a 2D image. Methods [18–20] based on 3D Morphable Models (3DMMs) 
[21] have dominated this field. Besides, there exist some methods advocating direct 
model-free reconstruction [22] or based on other innovative models [23]. However, 
all these methods suffer from the problem that the reconstructed faces are not 
realistic. Recently, NeRF shows encouraging results in capturing implicitly encoded 
complex scene structures and fitting 3D-consistent images with fine details [24–26]. 
As faces contain regular 3D structure, NeRF-based 3D face modelling researches 
[27–30] are now in full swing. 

7.2.2 Blind Face Restoration 

Face images are often degraded due to complicated factors in real word, and blind 
face restoration (BFR) aims at recovering high quality faces from the low-quality 
counterparts suffering from unknown degradation [31]. Even for today’s powerful 
GANs, imagining reasonable details out of thin air is too difficult. Current BFR 
methods always require facial priors, which can be coarsely categorized into three 
types according to the sources: geometric priors [32, 33], reference priors [34–37], 
and generative priors [31, 38–41]. Among them, the third kind is not limited by the 
quality of corrupted faces, the accessibility of high-resolution references having the 
same identity, or the capacity of the references. So it is the most suitable for the 
restoration of fitted faces rendered by current NeRF. 

7.3 Methodology 

7.3.1 Overview of IDeudemon 

Given an input face image X without any protection, the purpose of face de-
identification is to generate a photo-realistic image . X' that conceals the real identity.
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Fig. 7.2 The architecture of IDeudemon. To protect identity, we first estimate the coarse 3D 
parameters of input image X as an initialization. Then an NeRF model is employed to calculate 
X’s accurate 3D codes and fitted face . Xf . After adding protective perturbation to the real ID code, 
the NeRF generates the de-identified fitted face . Xp . To preserve utility, we design visual similarity 
assistance to directly retain the identity-agnostic areas and train a GAN referring to generative 
priors to produce the final high quality de-identified face . X'

The de-identified face . X' is visually similar to the original image X but should be 
judged as a different person by recognition tools when comparing with X. 

Figure 7.2 illustrates the overall pipeline of the proposed IDeudemon, which 
protects privacy and guarantees utility in distinct steps sequentially. In the following, 
we discuss the two steps in detail. 

7.3.2 Step I: Parametric Identity Protection 

Coarse 3D Parameters Evaluation 3DMMs are generative parametric models for 
the 3D representation of human faces. They are built from a set of 3D facial scans, 
coupled to each other with anatomical correspondences, and can represent any 
unseen faces as a linear combination of the training set [42]. Fitting 3DMMs, also 
known as 3D face reconstruction, facilitates the estimation of identity, pose, albedo, 
and illumination-related parameters from the face images. In order to provide a good 
basis for real-time NeRF-based fitting, we employ a 3DMM model [43], denoted 
as .Mf r , to initialize the 3D parameters [44] of the input face image X, which is 
denoted as 

.cid , cexp, calb, cillu =Mf r (X). (7.1) 

. c∗ represent the coarse 3DMM parameters for four disentangled factors: identity 

. cid , expression .cexp, and albedo .calb of the face X, and the illumination .cillu of the 
scene. These parameters are initialized by solving an inverse rendering optimization 
[45] based on the 3DMM model [43]. Although the initial identity parameter only 
describes the coarse geometry of the face area (without hair, teeth, etc.), it will be 
adaptively adjusted and become accurate through the NeRF model described below.
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NeRF-Based Identity Protection With initialized 3DMM parameters c∗, we  
employ a pretrained parametric NeRF model [30], denoted as Mnerf , to obtain the 
accurate 3D parameters and the fitted face Xf of original image X: 

.Xf , zid , zapp, zcam =Mnerf (X, cid , cexp, calb, cillu, C). (7.2) 

Xf is the fitted image. C is the camera parameter used for rendering (detailed 
calculation is shown in [30]). z∗ represent the computed 3D codes for face image X, 
whose dimensionality is the same as that of the corresponding coarse 3D parameters. 
In particular, because our de-identification task hopes to distinguish the identity 
feature from all other facial features, we let zid represent the identity separately 
and name it as ID code. Then we let the appearance code zapp contain not only the 
expression and albedo of the face in x, but also the illumination of the whole scene. 
In addition, as the density field from NeRF can implicitly encode the 3D geometry 
of the scene, we can also acquire a camera code zcam, which reflects the pose of the 
face in X. 

To protect the real identity information, we use a noise generator to generate 
benign Gaussian noise n whose size equals to the fitted ID code zid according to 
the actual requirements. Then we directly add the protective noise on zid to get a 
perturbed ID code z'

id : 

.z'
id = zid + n. (7.3) 

In Sect. 4.2, we perform a series of perturbation analysis experiments, where we get 
the optimum scale range of perturbation for identity protection. 

At the end of this step, the NeRF model takes the protected identity code z'
id , 

the original appearance code zapp, and camera code zcam as input and fits the final 
identity-protected fitted face Xp. It is formulated as 

.Xp, z'
id , zapp, zcam =Mnerf (z'

id , zapp, zcam). (7.4) 

Since our parametric NeRF model refers to the 3DMM model, the whole de-
identification process has good explainability. Moreover, since the perturbation is 
directly added on the disentangled ID code, the result with faithful identity change 
still well retains identity-agnostic features (i.e., expression, albedo, illumination, 
and pose). 

7.3.3 Step II: Utility Preservation 

Despite the promising de-identified fitted result . Xp of parametric NeRF model, it 
has limitations in terms of realistic looks. In order to generate visual-pleasing high 
quality faces, we take several measures as follows.
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Visual Similarity Assistance As mentioned earlier, hairstyles, accessories, and 
background are weakly related to the identity but may occupy a pretty large space 
and greatly affect human perception of visual similarity and the subsequent use. 
Therefore, we use face parsing maps [46, 47] to generate a head mask (which 
segments the background and the below-head body part) and a styling mask (which 
segments the hair and accessories) for X and . Xp. Here we combine the hair, 
accessories, background, and below-head body section in the original image X 
with the segmented face except for the hair and accessories in the fitted image . Xp. 
Therefore, a hybrid face image . Xl is produced, which conceals the real identity 
and retains the identity-agnostic areas. As seen in Fig. 7.2, . Xl has realistic identity-
agnostic features, low-quality face regions, and some irregular white gaps, which 
still need to be improved. 

High Quality Generation The translation from hybrid image . Xl to desired high 
quality de-identified photo . X' aims to accomplish a face restoration task, which 
transforms degraded image to its photo-realistic counterpart with distinct and 
discernible details. The domain gap is pretty large, so this task is challenging. 
Thanks to the leaps and bounds in BFR, here we employ a publicly available GAN 
model [31] that leverages rich and diverse priors encapsulated in the pretrained 
StyleGAN2 [48] to achieve high quality de-identified face generation. This GAN 
model is mainly composed of two parts: a U-Net [49] which is responsible for 
removing degradation and extracting “clean” features of . Xl , and a pretrained 
StyleGAN2 that provides facial priors. They are bridged by a latent code mapping 
and several Channel-Split Spatial Feature Transform (CS-SFT) layers in a coarse-to-
fine manner. By training this GAN model, we can obtain high quality de-identified 
image . X'. 

IDeudemon enjoys the benefits of separating the implementation of protecting 
privacy and preserving utility, so has the advantage of adjusting the degree of iden-
tity protection as practical need while maintaining remarkable utility performance. 
Our approach no longer needs to struggle with the annoying tradeoff between 
privacy and utility. 

7.3.4 Loss Function 

We train the GAN model with triplet of images X, . Xl , and . X'. We inherit the 
validated loss functions from [31] and adjust them as the requirements of our 
mission. 

Reconstruction Loss The widely used . L1 loss and perceptual loss are summed as 
the reconstruction loss .Lrec [50, 51], which targets at making the output . X' look 
like the original face X: 

.Lrec = λl1

∥
∥X' − X

∥
∥
1 + λper

∥
∥φ(X') − φ(X)

∥
∥
1 , (7.5)
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where . φ is the pretrained VGG-19 network [52], and we select the . conv1, · · ·, conv5
feature maps before activation. 

Adversarial Loss The adversarial loss .Ladv is responsible for restoring realistic 
textures, enforcing generated faces to be indistinguishable from real images. It is 
formulated as 

.Ladv = −λadvEX' [sof tplus(D(X'))], (7.6) 

where D denotes the discriminator and .λadv represents the adversarial loss weight. 

Facial Component Loss Given that people easily detect mistakes in the appear-
ance of a human face (uncanny valley effect), we also use the facial component loss 
with local discriminators for left eye, right eyes, and mouth, which is defined as 
follows. The first term is the discriminative loss [53], and the second term is the 
feature style loss [54]: 

.

Lcomp =
∑

ROI

λlocalEX'
ROI

[log(1 − DROI (X
'
ROI ))]+

λfs

∥
∥Gram(ψ(X'

ROI )) − Gram(ψ(XROI ))
∥
∥
1 ,

(7.7) 

where ROI is region of interest [55] from the component collection, which includes 
the .lef t_eye, the  .right_eye, and the mouth. .DROI is the local discriminator for 
each region. The feature style loss attempts to match the Gram matrix statistics [56] 
of real and restored patches from multiple layers of the learned local discriminators, 
which has been demonstrated to be conductive to generating realistic facial details 
and reducing unpleasant artifacts. Besides, . ψ denotes the multiresolution features 
from the learned discriminators. .λlocal and . λfs represent the loss weights of local 
discriminative loss and feature style loss, respectively. 

Identity Preserving Loss During the process of high quality generation, the 
“fake” identity generated in the previous step, i.e. the identity of . Xl , must remain 
as constant as possible. We employ a pretrained state-of-the-art (SOTA) face 
recognition model [58] to extract identity features. Deng et al. [58] is chosen because 
it can provide highly discriminative identity features and has a clear geometric 
interpretation due to the exact correspondence to the geodesic distance on the 
hypersphere. We use the identity preserving loss .Lid to ensure that the identity of 
. X' is the same as . Xl : 

.Lid = λid

(

1 − rid(X') · rid(Xl)

‖rid(X')‖2 · ‖rid(Xl)‖2

)

, (7.8) 

where . rid represents the identity feature extract by Deng et al. [58]. .λid denotes 
the weight of identity preserving loss. Here we use cosine similarity rather than the 
original . L1 distance in [31] because we think it better fits the angular margin based 
identity extractor [58] (and is proved in Sect. 4.4).
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The overall model objective is a combination of the above losses: 

.Ltotal = Lrec + Ladv + Lcomp + Lid . (7.9) 

The hyperparameters are set as follows: .λl1 = 0.1, .λper = 2, .λadv = 0.1, . λfs =
200, and .λid = 5. 

7.4 Experiments 

7.4.1 Experimental Setup 

Datasets We choose the FFHQ dataset [59], which contains 70K high-resolution 
face images with diverse demographic information like age, gender, and race, to 
train our GAN model in Step II. We randomly select 60K images for training and 
10K for testing. All images are aligned and cropped to size .512 × 512 covering the 
whole face, as well as some background regions. Moreover, in order to compare 
with other methods fairly, we also test IDeudemon on the CelebA–HQ dataset [60] 
and show our generalization ability (see Sect. 4.3 for details). 

Evaluation Metrics We evaluate the proposed IDeudemon in terms of two metrics, 
as described below: 

(1) Privacy metrics. Following previous work [6], we measure the L2 distance 
of embedding vectors from the de-identified and original faces extracted by 
a pretrained face recognition model, denoted as DIS, to evaluate the quality 
of identity protection. For a fair comparison, we employ two models that are 
excluded from our training, i.e., the Face Recognition library1 (denoted as FR), 
and the FaceNet [57] that is pretrained on two public datasets (CASIA-Webface 
[61] and VGGFace2 [62]), respectively. 

(2) Utility metrics. We evaluate not only the quality of the de-identified images, but 
also the retention ability to pose and expression. Specifically, PSNR, SSIM, and 
FID are chosen to evaluate the generation quality. PSNR and SSIM are widely 
used objective methods to measure the difference between two images, while 
FID can measure the distance between the generated distribution and the real 
distribution. Besides, the L2 distances between pose and expression vectors 
from the de-identified and original faces extracted by an open-sourced pose 
estimator [63] and a 3D facial model [64] are calculated as pose (denoted as 
POSE) and expression (denoted as EXP) similarity. 

Implementation Details We implement our framework as shown in Fig. 7.2. Since 
the value range of the ID code is between [−1, 1], after Step I, the part out of the

1 https://github.com/ageitgey/face_recognition 

https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
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range needs to be truncated to ±1, depending on which value is closer. The sizes 
of different facial codes are cid , zid ∈ R100, cexp ∈ R79, calb ∈ R100, cillu ∈ R27, 
and zapp ∈ R206, respectively. During the training of the GAN model in Step II, 
the minibatch size is set to 6. We augment the training data with horizontal flip and 
color jittering. We train our model with Adam optimizer [65] for a total of 300k 
iterations. The learning rate was set to 2 × 10−3 and then decayed by a factor of 2 
at the 220k-th, 270k-th iterations. 

7.4.2 Protective Perturbation Analysis. 

This section analyzes the performance of our IDeudemon with different levels of 
perturbation applied on the original ID code in Step I. The additive Gaussian noise 
n is sampled from a normal distribution. The . loc is set to 0, the value of its . scale
belongs to .{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}, and the size equals to . zid . 
Ten de-identified faces are generated for every test face image under each . scale
value. Various statistical mean metric results are calculated at each .scale value. 

Figure 7.3 shows the qualitative results. It can be observed that with the increase 
of the noise .scale, the geometric difference between the de-identified and original 

Fig. 7.3 Qualitative results of the influence of the noise .scale on the FFHQ. The first column 
shows the original face images. The rest columns demonstrate de-identified faces whose identity 
distances are closest to the mean distance under every .scale value
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Fig. 7.4 The de-identified performance variation with respect to the noise .scale on the FFHQ. 
The x-axis indicates the .scale value, and the y-axis indicates different metric values. The identity 
judgment threshold is 0.6 for Face Recognition library [6] and 1.1 for FaceNet [57] 

faces expands, while the identity-agnostic attributes (hairstyle, background, etc.) 
are still maintained. The quality of the de-identified images is consistently good 
and is almost comparable to the quality of the original images. All synthetic images 
have sharp details such as eyelashes, wrinkles, teeth, and lips. Quantitative results 
are shown in Fig. 7.4. One can see that the degree of identity protection can be 
adjusted, along with the change of utility. It is worth noting that the utility is kept at 
a good level (e.g., the FID values are always low). Particularly, we note that when 
the noise scale is smaller than 0.2, the results are too similar to the original faces 
and the ability to protect identity is not strong; when the scale is larger than 0.3, the 
geometric structure of the faces begins to become exaggerated (such as eccentric 
eyes, noses, wrinkles, and shadows). 

Based on the extensive experiments mentioned above, taking into account the 
visual effects and evaluation metrics comprehensively, we recommend the users 
to set the .scale of the protective perturbation between . 0.2 and . 0.3 to obtain de-
identified faces efficiently with well-preserved appearance. We no longer show the 
case of adding Gaussian noise with larger .scale values because the generated faces 
will be quite visually exaggerated. 

7.4.3 Comparison with SOTA Methods. 

To validate the effectiveness of the proposed IDeudemon, we compare it with several 
SOTA de-identification methods: DeepPrivacy [2], AnonymousNet [4], CIAGAN



138 7 High Quality Face De-identification with Model Explainability

Fig. 7.5 Qualitative comparison on the CelebA-HQ for face de-identification. Our IDeudemon 
conceals the real identity and produces photo-realistic details at the same time. Zoom-in for best 
view 

[3], Gu et al. [5], Cao et al. [6], and AMT-GAN [16]. For fairness, the test dataset is 
CelebA–HQ [60], and all images are aligned and cropped to size .256 × 256. 

To test on the dataset, we first bilinearly interpolate the input image to . 512× 512
and then process it according to the pipeline in Fig. 7.2. Because (1) the NeRF-
based 3D fitting in Step I can still handle the image without photo-realistic details, 
(2) the GAN model in Step II is trained to process this kind of degradation, our de-
identification results are still outstanding in terms of generation quality. The .scale of 
protective Gaussian noise is set to 0.25. The final outputs are rescaled to .256× 256, 
covering the whole face, as well as some background regions. 

Qualitative results are shown in Fig. 7.5a. One can see that the competing 
methods fail to produce photo-realistic faces, especially when the original face 
has a large pose (the last two rows) or expression (the second row). In contrast, 
our IDeudemon obfuscates the human identities in a perceptually natural manner; 
meanwhile, the de-identified face still shares similar appearance, as well as the same 
pose, expression, illumination, and background with the original face. It is worth 
noticing that our results are high fidelity and can retain clear lips, teeth, and even 
eyelashes, which is superior to other methods. 

Quantitative results are presented in Table 7.1. Our method obtains the best 
scores in privacy metrics, clearly confirming our initial motivation that manipulating 
the 3D parametric ID code can greatly benefit the identity protection. One can 
see that our IDeudemon achieves comparable PSNR and SSIM indexes to other 
competing methods but achieves significantly better results on FID index, which is a 
better measure for the image perceptual quality. In addition, our method outperforms 
the other methods in retaining pose and expression. These verify the efficiency of
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Table 7.1 Quantitative comparison with SOTA methods on the CelebA-HQ. . ↑ means higher is 
better, and . ↓ means lower is better. Red and blue indicate the best and the second best performance 

Method 
DIS 

PSNR SSIM FID POSE EXP 

FR CASIA VGGFace2 

DeepPrivacy [2] 0.783 1.091 1.187 21.3 0.791 24.6 6.22 5.27 

AnonymousNet [4] 0.497 0.875 0.936 20.4 0.803 53.7 3.69 4.02 

CIAGAN [3] 0.671 0.919 1.085 18.6 0.522 28.1 8.93 5.19 

Gu et al. [5] 0.812 1.207 1.224 23.1 0.751 39.7 3.95 3.96 

Cao et al. [6] 0.794 1.206 1.231 24.1 0.902 22.6 3.04 2.81 

AMT-GAN [16] 0.596 0.927 0.941 21.0 0.799 33.3 3.02 2.86 

IDeudemon 0.819 1.228 1.233 25.9 0.898 8.7 2.96 2.79 
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Fig. 7.6 User study results of different de-identification methods 

our designs in ensuring utility and make IDeudemon have the least impact on the 
subsequent use of the de-identified images. 

User Study The de-identified results of comparison methods and our IDeudemon 
on 100 face images are presented in a random order to 10 volunteers for subjective 
evaluation. The volunteers are asked to rank the 7 de-identified outputs of each input 
image according to their perceptual quality. Finally, we collect 7k votes, and the 
statistics are presented in Fig. 7.6b. As can be seen, our IDeudemon receives much 
more rank-1 votes than other SOTA methods.
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Fig. 7.7 Comparison with StyleFace [8] at megapixel level (.1024 × 1024, from the paper sample 
image) 

Besides, IDeudemon can conduct face de-identification at megapixel level 
(inherits from [48]), and we compare it with one of the first high-resolution methods 
published last year, StyleFace [8] (see Fig. 7.7). Our results are at least visually as 
good as the original ones of [8], despite having to run on the cropped faces extracted 
from the paper PDF. 

7.4.4 Model Analysis and Ablation Study 

3D Parametric Fitting Method Selection In the first step of our “divide and 
conquer” strategy, what we need is a fast, accurate tool that can fit the disentangled 
facial parameters in 3D space. The NeRF model [30] created last year is the first 
work to accomplish this task. Hong et al. [30] has verified the validity of each part 
and its SOTA fitted effect. Therefore, we adopt it for face parametric fitting in Step I. 
The brilliant de-identification effects of IDeudemon have proven the correctness of 
this choice. 

Ablation Study of Step II In order to validate the effectiveness of our various 
designs in Step II, in this section we conduct an ablation study by introducing some 
variants of our IDeudemon and comparing their performance. 

We first pick and train five SOTA face restoration models to respectively replace 
the GAN model [31] we used as five variants. They are denoted as BOPB [40], 
GPEN [41], RestoreFormer [35], CodeFormer [37], and VQFR [36]. Then w/o vsa 
refers to the IDeudemon model without visual similarity assistance. Additionally, 
we validate the necessity of the loss functions, which are indicated as w/o Lrec, w/o  
Ladv , w/o  Lcomp, and w/o Lid . We specifically calculate the identity preserving loss 
by using L1 distance (like [31]) rather than cosine similarity and denote it as idloss.



7.4 Experiments 141

Fig. 7.8 Ablation studies on GAN model, visual similarity assistance, and identity preserving loss 
on the FFHQ. Zoom-in for best view 

Table 7.2 Ablation study results of Step II on the FFHQ. ↑ means higher is better, and ↓ means 
lower is better. Red and blue indicate the best and the second best performance 

Method 
DIS 

PSNR SSIM FID POSE EXP 

FR CASIA VGGFace2 

BOPB [40] 0.803 1.083 1.224 26.2 0.899 17.63 2.963 2.783 

GPEN [41] 0.794 1.186 1.236 24.8 0.895 11.65 2.975 2.772 

RestoreFormer [35] 0.802 1.191 1.239 24.6 0.889 11.14 2.956 2.768 

CodeFormer [37] 0.801 1.189 1.236 23.8 0.905 10.83 2.950 2.778 

VQFR [36] 0.796 1.185 1.238 24.2 0.898 11.95 3.006 2.839 

w/o vsa 0.815 1.193 1.244 20.4 0.728 25.78 3.084 3.854 

w/o 0.801 1.188 1.236 24.2 0.847 10.07 3.112 2.847 

w/o 0.799 1.191 1.231 24.6 0.863 11.53 2.993 2.788 

w/o 0.803 1.189 1.237 25.4 0.891 10.12 2.947 2.831 

w/o 0.417 0.816 0.965 26.3 0.912 9.613 2.973 2.754 
idloss 0.768 1.079 1.203 25.5 0.901 10.06 2.958 2.762 

IDeudemon 0.804 1.192 1.239 25.8 0.903 9.99 2.942 2.761 

We perform on the FFHQ dataset to evaluate IDeudemon and its seven variants. 
After the common Step I, except that w/o vsa takes the Xp as input, the other six 
variants have Xl as input. Figure 7.8 and Table 7.2 demonstrate the qualitative and 
quantitative comparisons. One can see that IDeudemon achieves overall better quan-
titative measures than its variants of high quality generation model. Specifically, 
BOPB, GPEN, RestoreFormer, and VQFR are weak in inpainting the irregular white 
gaps in Xl , BOPB alters the hue of the image, GPEN and RestoreFormer often suffer
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from artifacts at face contours, and VQFR sometimes produces blurry details (see 
the teeth). Although CodeFormer does a good job in filling in the white gaps, it 
tends to smooth out the whole faces and changes the clothing. 

By discarding the visual similarity assistance, the results of w/o vsa cannot retain 
the identity-agnostic features. For instance, the background, hairstyle, accessories, 
and the clothing. Moreover, artifacts and unnatural splotches appear randomly, 
which affect the visual perception. Although w/o vsa performs slightly better in 
identity protection, its utility performance has deteriorated significantly. These 
imply that visual similarity assistance plays an import role in synthesizing realistic 
details and preserving utility. 

It can be observed that only the complete loss function combination achieves the 
optimal results. It proves that Lrec reduces artifacts and preserves visual similarity, 
Ladv enhances realism, Lcomp improves clarity in the eyes and mouth, and Lid 
maintains the protected identity. As for idloss, it can generate high quality faces; 
however, when applying the same protective perturbation, it generates face that 
looks more like the original face X than Xl . The privacy indicators of idloss 
demonstrate that our adjustment of original identity preserving loss can better 
protect the human identity. 

Overall, IDeudemon shows superior performance to its variants, demonstrating 
the effectiveness of Step II’s architecture and the adjusted identity preserving loss. 

7.5 Discussion 

We want to emphasize that while elements of IDeudemon are built on well-
understood 3D reconstruction principles (dating back to Vetter and Blanz) and blind 
face restoration, our core contribution is new and essential. The key to making 
IDeudemon jump out of the annoying privacy–utility tradeoff is the “divide and 
conquer” idea that protects privacy and preserves utility in two sequential steps, the 
identity is protected at 3D space through a parametric NeRF model, both of which 
have not appeared previously in the literature. In addition, we pick the most suitable 
GAN model and perturbation range for our approach through sufficient experiments. 
We have also designed visual similarity assistance and adjusted the loss function so 
as to better finish the de-identification task. 

7.6 Conclusion 

In this chapter, we propose a novel two-step face de-identification method that 
conducts “divide and conquer” strategy to solve the challenging privacy–utility 
tradeoff problem. By introducing advanced 3D parametric face fitting and obfus-
cating the disentangled ID code, we hide the real identity and endow the whole 
model with good explainability. Equipped with the visual similarity assistance
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and generative prior embedded GAN, our model can produce photo-realistic de-
identified faces, allowing us to adjust the protection level while keeping good image 
utility. Extensive experiments demonstrate the superior capability of IDeudemon in 
face de-identification, outperforming prior arts. 
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Chapter 8 
Deep Motion Flow Guided Reversible 
Face Video De-identification 

8.1 Introduction 

The proliferation of smartphones and short-video platforms has changed the way 
people create and consume video. Ordinary individuals have become the primary 
producers and consumers of video activities [1]. With the surge in the number of 
online videos, the sensitive information (such as human faces) contained in these 
videos has caused unprecedented violations in the field of personal privacy protec-
tion [2]. New privacy laws and regulations begin to forbid the public disclosure of 
personal sensitive information. However, since the access and utilization of such 
videos are neither easy to monitor nor to prevent, it is essential to grant users the 
option to obfuscate themselves out of these videos. 

Advanced computer vision technology and blooming online social networks have 
greatly facilitated both daily social interactions and face videos sharing [3]. While 
the media users are willing to guard their personal privacy, they are also eager to 
enjoy the convenience of advanced identity-agnostic computer vision applications. 
These applications do not need to identify the people in the videos, for instance, 
face detection, face reenactment, emotion analysis, action recognition, and so on. 
Therefore, maintaining the utility of identity-protected videos to support existing 
identity-agnostic tasks and normal online social use becomes a new and appealing 
topic. In addition, the Internet is not an extrajudicial land. When an incident such 
as a crime occurs, authorities should be able to examine the original videos for 
forensics purposes. 

Reversible face video de-identification is an effective solution to the afore-
mentioned issues. But it is very challenging to design a satisfactory technique 
to achieve this target. On the one hand, it requires obfuscating the sensitive 

Main contents of this chapter have been published in “Wen, Y., Liu, B., Cao, J., Xie, R., Song, 
L., & Li, Z. (2022). IdentityMask: deep motion flow guided reversible face video de-identification. 
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identity information of the subject while minimizing distortion or changes in other 
nonidentity features [4–6], i.e., ensuring visual similarity including appearance, 
posture, expression, background information, etc. On the other hand, in the case 
of “after-the-fact forensics,” it allows the authorized party to fully restore the 
anonymous videos [7]. 

Existing face video privacy-preserving methods [4–6, 8–12] only focus on the 
former aspect and lack the restoration ability, which does not meet the privacy 
requirements of keeping pace with the times. Furthermore, these methods process 
video frame by frame without considering the temporal relationship between 
frames. This can easily make the de-identified video flicker due to temporal 
inconsistency and cause excessive computational overhead. 

In order to overcome the above problems, in this chapter, we present a novel and 
effective reversible face video de-identification modular framework guided by deep 
motion flow, called IdentityMask. Our framework contains two main functional 
modules (Protection Module and Recovery Module), both of which are guided by 
the crucial Motion Flow Module, while an Affine Transformation Module provides 
simple but reliable assistance. Instead of per-frame processing, it lets only the first 
affined frame go through the Protection/Recovery Module and calculates the deep 
motion flow between every two adjacent frames via a motion flow generator. Then 
the subsequent de-identified/recovered frames can be generated based on the first 
protected/recovered frame by the guide of the relative motion representation. All 
the synthesized videos can be visually pleasing without flickering. Also, we design 
a discrete key space where keys condition identity changes to securely enable the 
recovery transformation only for the authorized parties. Specifically, any video that 
the user wants to obfuscate will be transformed into the de-identified one with an 
assigned Ukey (a number that matches the user’s UID). Then, given a de-identified 
video, the original video can only be recovered if the correct key and the trained 
recovery pipeline are provided. We further increase security as follows: Given an 
anonymized video, even the trained recovery pipeline is stolen, if a wrong key is 
provided, it changes to a new identity that is still different from the original one 
(Fig. 8.1, “Wrong Key”), with a natural appearance. When the framework is used in 
practical applications, the Ukey can be a number defined according to the specific 
situation. For example, specified by the user, distributed by the video platform, and 
so on. 

This chapter is built upon our prior work [13] and [14] with multiple improve-
ments. Compared with [13], we add a recovery process and achieve reversible face 
video de-identification, which is more conducive to the establishment of orderly 
online social networks. We also add Ukey to enable users to control the de-
identification process. The method in [14] works on still images and cannot be 
directly applied to videos, while in this chapter, we use two specifically designed 
modules to process videos. In addition, the reference identity in [14] is obtained by 
randomly selecting k (during the experiment, we set .k = 3000) different identities 
from the training set, which is inconvenient and may cause legal disputes. We solve
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Fig. 8.1 Comparison between a vulnerable social media platform (left panel) and a IdentityMask 
protected social media platform (right panel) in maintaining normal use, safeguarding legal super-
vision as well as handling malicious privacy intruders for stealing personal identity information 

this shortcoming by leveraging random seeds conditioned on Ukeys to generate 
reference identities, which is more flexible and gets rid of the need for auxiliary 
faces. 

In summary, the main contributions of this chapter are described as follows: 

• To the best of our knowledge, the proposed IdentityMask is the first method that 
can conduct reversible de-identification for face videos. Our proactive defense 
technique well addresses the growing concerns about personal privacy protection 
during online video sharing. On the one hand, the users can protect individual 
identity with a certain Ukey (equivalent to a password) before sharing. On the 
other hand, when the identity-protected video is released, the authorized party 
can still obtain the recovered video with the original identity through the correct 
Ukey, while it is difficult for unauthorized parties to infer the true identity. 

• We introduce deep motion flow into video de-identification tasks to avoid 
per-frame processing. We show that the Motion Flow Module can provide impor-
tant guidance for IdentityMask pipeline to generate identity-protected/identity-
recovered videos, resulting in significantly improved synthesis quality and 
reduced computational overhead. 

• Experimental results on a diverse face video dataset (gender, ethnicity, age, 
etc.) have demonstrated the effectiveness of our proposed IdentityMask. In 
addition, we introduce evaluation metrics designed for videos, which are lacking 
in existing literature.
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8.2 Related Work 

To our best knowledge, our work is unique and there is no previous similar work 
to directly compare with. Nevertheless, it is closely related to previous video de-
identification work, which can be classified into two categories according to the 
application scenarios, as described below. 

8.2.1 Face Video De-identification 

The face videos, such as vlogs, live-streaming sales, speeches, and interviews, 
are shot with human head and part of the upper body as the main subject and 
have become a popularity in social media in recent years [15–17]. Therefore, the 
corresponding de-identification research is emerging. We classify these approaches 
into two categories. 

Identity-Swapping-Based Methods Replacing the identity in a face video with 
someone else is a straightforward but effective idea of de-identification. The 
“someone” here can be either a real identity provider or a somehow synthesized 
identity that does not exist in reality. Generally, the latter is a more thorough way of 
privacy protection. 

Zhu et al. [12] applied deepfake technology to de-identify medical examination 
videos by explicitly swapping the patients’ faces with open-source characters. 
However, such simple operation will lead to an extreme deterioration in visual 
similarity, and thus more skillful identity-swapping-based methods are proposed. 
With several pretrained active appearance models (AAMs), Samarzija et al. [9] 
found the best fit model of the original face and swapped the face region with 
another face taken from the training dataset. Meden et al. [10] replaced the 
original faces with surrogates generated from a small number of identities. Instead 
of synthesizing the surrogate faces through simple pixel averaging, they used a 
convolutional neural network (CNN) to generate artificial surrogates. Li et al. [11] 
used a trained facial attribute transfer model (FATM) to map the nonidentity-related 
facial attributes to the face of donors, who were a small number (usually 2–3) of 
consented subjects. Gafni et al. [5] utilized a multilevel face descriptor to convert 
the identity of the original face to that of the target face. Specifically, the removal of 
identity was done via distancing the face descriptors of the output video from those 
of the original image. Maximov et al. [6] removed the identification characteristics 
of input people in the bottleneck of the generator via a one-hot label that encoded the 
desired identity; meanwhile, they leveraged the input landmark images with some 
original identity information left to preserve the pose; thus the generated identity 
was a composition of both the landmark identity and the desired identity.
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Identity Disentanglement-Based Methods Although the former kind of methods 
have evolved to a stage with amazing results, its reliance on auxiliary identities 
can make it difficult to apply under increasingly stringent regulations. For example, 
consent from the target identity provider should be obtained regularly, which is kind 
of inconvenient. 

Consequently, another pattern that deals with face video de-identification through 
certain face models by training to extract facial feature representations begins to rise. 
Once the representations have been disentangled, a de-identified face video can then 
be generated based on the new representations originated in which the protected 
identity information has been eliminated, reduced, or obfuscated. During this time, 
a new virtual identity will generate. Our method follows this pattern. 

Gross et al. [8] factorized input images into identity and nonidentity factors 
using a generative multifactor model and then applied a de-identification algorithm 
on the combined factorized data before using the bases of the multifactor model 
to reconstruct de-identified images. With the development of deep neural network 
(DNN), deep face models can better undertake the task of disentanglement. Ren 
et al. [4] employed a multitask extension of the generative adversarial network 
(GAN), where a face anonymizer tried to minimize the identification accuracy and 
an activity detector tried to maximize spatial action detection performance. 

We provide a comprehensive comparison between the previous face video de-
identification methods and ours in Table 8.1. 

Table 8.1 A comparison to the existing face video de-identification methods 

Gross Samarzija Meden Li Zhu Ren Gafni Maximov 

[8] [9] [10] [11] [12] [4] [5] [6] Ours 

Without auxiliary 
faces 

Yes No No No No Yes No No Yes 

Demonstrated on 
a diverse video 
dataset (gender, 
ethnicity, age, 
etc.) 

No No Yes No No Yes Yes Yes Yes 

Demonstrated on 
a diverse face 
video dataset 
(gender, ethnicity, 
age, etc.) 

No No No No No No Yes No Yes 

Without 
per-frame 
processing 

No No No No No No No No Yes 

Recover original 
face 

No No No No No No No No Yes 

Reference to a 
comparison with 
ours 

Fig. 8.5 Fig. 8.6 Fig. 8.5
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8.2.2 Surveillance Video De-identification 

Video surveillance systems have been omnipresent for a considerable time, with 
large systems being deployed in strategic places such as public transportation, 
airports, city centers, or residential areas. In order to address the never-ending con-
cerns about personal privacy protection, a large amount of targeted de-identification 
technologies have been proposed. As the surveillance videos typically contain 
multiple people (with full body) and complex surrounding environment, these 
methods always attach great importance to efficient face detection and tracking and 
apply anonymization on the segmented origins. Here we classify them into three 
categories. 

Obfuscation-Based Methods These methods achieve video de-identification by 
obfuscating each frame’s privacy-sensitive region in some way. Specifically, Dufaux 
et al. [18] used domain scrambling methods to achieve distortion. Schiff et al. [19] 
employed solid ellipsoidal overlays, while minimized the overlay area to maximize 
the remaining observable region of the scene. Chen et al. [20] implemented 
an EMHI approach to obscure the entire body. Agrawal et al. [21] applied the 
exponential blur of pixels in the voxel or line integral convolution. Mrityunjay et 
al. [22] obscured the segmented bounding box region by using Gaussian Blur of 
the pixels and binarizing the intensity values. Ivasic-Kos et al. [23] applied 2D 
Gaussian filtering to automatically obfuscate the human body shape information. 
Blažević et al. [24] replaced humans with rendered 3D human models. Ryoo et 
al. [25] presented an inverse super-resolution (ISR) paradigm that used extreme 
low-resolution (e.g., 16. ×12) videos to achieve de-identification and benefit activity 
recognition. Flouty et al. [26] introduced a sliding window smoother for temporal 
smoothing on the detections. [27] obfuscated the privacy-sensitive parts at multiple 
privacy levels by using a random corruption matrix. Kim et al. [28] fundamentally 
protected privacy by blurring unwanted blocks in images, yet ensured that the robots 
could understand the video for their perception. Wang et al. [29] used a lensless 
coded aperture (CA) camera, which placed only a coded aperture in front of an 
image sensor, and the resulting CA images would be visually unrecognizable and 
were difficult to restore with high fidelity. Zhou et al. [1] proposed a novel PsOP 
framework that was extendable to any potential privacy-sensitive objects pixelation 
after leveraging pretrained detection networks as the backbone. Tu et al. [30] 
generated bounding boxes to cover the regions of interest, and then the pixels inside 
bounding boxes could be modified to achieve a certain degree of content-obscuring 
to obscure the person-identifiable contents. 

Style Transfer-Based Methods Style transfer has also been used to do de-
identification. Winkler et al. [31] generated an abstracted version of the security 
regions that showing only outlines of persons. Erdélyi et al. [32] presented a 
resource-aware cartooning privacy protection filter that converted raw images into 
abstracted frames where the privacy revealing details were removed. Brkić et al. [33] 
altered the appearance of the segmented pedestrians through a neural art algorithm
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that used the responses of a DNN to render the pedestrian images in a different 
style. [34] proposed two privacy protection schemes by using false colors on entire 
images. PECAM [7] converted the real-world images (domain-X) into the privacy-
enhanced ones (domain-Y) through cartoon style rendering. 

Identity Disentanglement-Based Methods Recently, the development of deep 
CNNs has also inspired new methods based on identity disentanglement [35]. 
Li et al. [36] developed an encoder–decoder network architecture that could 
separately disentangle the facial feature representation into an appearance code and 
an identification code. The anonymous face was synthesized by recombining the 
original identity code and another appearance code from the target set to protect 
the individual privacy. Proença et al. [37] used a binary vector labelling ID, gender, 
ethnicity, age, and hairstyle predicted by an attribute classifier to keep full control 
over the appearance of the anonymous faces. 

Especially, among all these video surveillance de-identification methods, there 
exist five methods [7, 24, 27, 34, 37] that are reversible and can recover the original 
scene. Therefore, it is imperative to develop similar reversible de-identification 
technology for face videos. These five technologies focus on the accurate recording 
of events in supervised scenes, while little attention is paid to the generation of 
subtle details due to the original low resolution. In contrast, we strive to generate 
visual-pleasing facial details and maintain accurate facial motion. 

8.3 Preliminaries of Problem Formulation 

A reversible face video de-identification model generally can be viewed as a 
combination of a complex function . δ and its inverse function . δ−1. To be more  
specific, the function . δ maps a given face video .V = (v1, v2, · · · , vn) (. vi represents 
the . ith frame) to a de-identified video .V ' = (v'

1, v
'
2, · · · , v'

n), aiming to conceal the 
real identity, and can be formulated as 

.δ(V ) = V ' (8.1) 

s.t. : 1 ≤ i ≤ n, ID{vi} /= ID{v'
i}. 

After this, video . V ' can still be used normally, and when given the right key, 
the function .δ−1 can restore a video .Vr = (vr,1, vr,2, · · · , vr,n) with the original 
identity, but if the key is wrong, the function .δ−1 restores a visual-pleasing video 
.Vw = (vw,1, vw,2, · · · , vw,n) whose identity is different from the original video’s 
identity. It can be formulated as follows: When the right key is given: 

.δ−1(V ') = Vr (8.2) 

s.t. : 1 ≤ i ≤ n, ID{vr,i} =  ID{vi};



154 8 Deep Motion Flow Guided Reversible Face Video De-identification

and when the wrong key is given: 

.δ−1(V ') = Vw (8.3) 

s.t. : 1 ≤ i ≤ n, ID{vw,i} /= ID{vi}. 

8.4 Deep Motion Flow Guided Reversible Face Video 
De-identification 

In this section, we propose a modular architecture, called IdentityMask, to address 
the reversible face video de-identification problem. From the perspective of realized 
function, IdentityMask includes two-directional mappings: a de-identification pro-
cess and a recovery process. When given an original nonprotected face video V , the  
de-identification process aims to transform it into an identity-protected one (. V '), 
whose identity change conditioned on the Ukey, and the recovery process aims to 
transform the de-identified video . V ' into an identity-recovered one (. Vr with right 
key or . Vw with wrong key). Figure 8.2 illustrates the whole pipeline. 

From the perspective of framework structure, IdentityMask consists of two 
main functional modules: the identity protection module Protection Module and 
the identity restoration module Recovery Module, both of which are guided by 
the vital Motion Flow Module. With the simple but reliable assistance of the 

Fig. 8.2 The overall architecture of the proposed reversible face video de-identification method, 
IdentityMask. Our framework consists of two processes: The de-identification process provides a 
protective mask for identity information, while the recovery process removes the protective mask 
if and only if the right key is provided. The former relies on the Protection Module, and the latter  
relies on the Recovery Module, both of which are guided by the crucial Motion Flow Module, and  
are assisted by the simple but reliable Affine Transformation Module
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Table 8.2 Notations Superscript t Affined frame 

p ID-protected frame 

.' ID-protected frame with background 

r ID-recovered frame 

Subscript r ID right recovered frame 

w ID wrong recovered frame 

Model .M Motion flow generator 

.F Fusion network 

Affine Transformation Module, IdentityMask efficiently achieves reversible de-
identification. In the following subsections, we first introduce the four modules, 
respectively, and then describe the entire IdentityMask pipeline. Notations used in 
this section are summarized in Table 8.2. 

8.4.1 Protection Module 

We achieve de-identification by following the identity disentanglement pattern. 
As shown in Fig. 8.4, when given an original clean face frame . vt

1, we apply an 
identity encoder and an attribute encoder to extract two disentangled representations 
of the latent space, denoted as .rid(vt

1) and .rattr (v
t
1). Among them, the identity 

representation .rid contains all the information relevant to the identity that affects 
face verification systems to judge whether it is the same person, and the attribute 
representation .rattr contains the rest of information carried by the image that guar-
antees the visual similarity (e.g., pose, expression, overall structure, background, 
and so on). Based on this, we firstly use the Ukey as a randomness seed to generate 
a reference identity vector .rref er whose size equals to .rid(vt

1), which is formulated 
as 

.rref er = RUkey. (8.4) 

Here the Ukey is a number that uniquely represents the user’s identity. Then, a 
component vector .r⊥(vt

1) that is orthogonal to .rid (vt
1) in .rref er can be decomposed 

as follows: 

.r⊥(vt
1) = rref er − (rid(vt

1) · rref er ) · rid(vt
1). (8.5) 

It allows us to create a new identity .rnew(vt
1) by rotating .rid(vt

1) with a controllable 
parameter . θ , and we denote it as 

.rnew = rid(vt
1) · cos θ + r⊥(vt

1) · sin θ. (8.6)
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Finally we synthesize the de-identified face .vp,t

1 with new identity representation 
.rnew and original attribute representation .rattr (v

t
1) through a well-trained fusion 

network as follows: 

.v
p,t

1 = F(rnew, rattr (v
t
1)). (8.7) 

8.4.2 Recovery Module 

Given a de-identified face frame .vp,t

1 , our Recovery Module, which is based on 
the same identity disentanglement network structure as the Protection Module, can 
restore the original frame with real identity if and only if the right key is provided. To 
be more specific, we firstly imply the aforementioned identity and attribute encoders 
to extract its identity representation .rid(v

p,t

1 ) and attribute representation .rattr (v
p,t

1 ), 
which has the relationship as 

.rid(v
p,t

1 ) = rnew, (8.8) 

rattr (v p,t 
1 ) = rattr (v1). 

Then when given the right key (i.e., R. _key, which we define to be equal to the Ukey), 
the recovered identity embedding .rrid can be calculated as 

.rrid = rid(v
p,t

1 ) − RR_key · sin θ

cos θ − A · sin θ
, (8.9) 

where 

.A = cos2 θ − (rid (v1,p) − RR_key · sin θ) · rid(v
p,t

1 )

sin θ · cos θ
. (8.10) 

In fact, middle parameter A equals .r '
id · rref er . Finally, the right recovered image 

with original real identity can be obtained as 

.v
r,t
r,1 = F(r '

id , rattr (v1,p)). (8.11) 

8.4.3 Motion Flow Module 

The above Protection and Recovery Modules work well for images, and it is 
straightforward to directly apply them to videos in a frame by frame way. However, 
since both modules rely on the disentanglement of latent convolutional features, 
direct per-frame processing is time-consuming. Typically, the flow estimation and
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Fig. 8.3 Illustration of (a) existing face video de-identification technologies using per-frame 
network generation and (b) the proposed deep motion flow guided reversible face video de-
identification 

feature propagation are much faster than the computation of convolutional features 
[38], and consecutive face video frames are highly similar, so we exploit the 
similarity to reduce computational cost and achieve speedup. Specifically, either 
the Protection Module or the Recovery Module only processes the first frame; then 
we use a motion flow generator to calculate the relative motion flow of every two 
adjacent frames (see Fig. 8.3), which is denoted as 

.M = (m1,m2, · · · ,mn−1), (8.12) 

where . mi (.i ≤ n) denotes the relative motion flow that can warp the processed (i.e., 
de-identified or recovered) . ith frame to the next .(i + 1)th frame. 

8.4.4 Affine Transformation Module 

The position and pose of faces in online sharing videos vary widely, which usually 
differ from the “standard” frontal alignment that commonly used in large face 
datasets. However, it is well-known that computing deep representations by using 
a pretrained CNN does have a restriction: The test image needs to lie close to the 
image distribution trained by the CNN. Otherwise, the latent optimization may fail 
to reproduce on the test image, leading to poor feature maps. Therefore, directly 
applying Protection Module or Recovery Module on the first frame is invalid, and we 
design an affine transformation, which can standardize and restore the distribution 
of the first frame. 

To be specific, we calculate several keypoints of all faces in the training datasets 
of Protection and Recovery Module, compute the average, and set it as the standard 
pattern (denoted as .PST D). Every time before the first frame is input to the Protec-
tion or Recovery Module, its keypoints (denoted as .Pv1 or . Pv'

1
) are firstly computed 

in the same way. Then these keypoints are matched to the standard keypoint pattern
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.PST D with an affine transformation, which is obtained by minimizing the distortion 
between the two sets of points. Using this affine transformation, we warp every pixel 
of the input first frame face to the corresponding position of the average face. We 
then copy the edge color to fill the warped image into the same dimension as the 
input. More formally, we denote 

.T = Pv1ƱPST D, T ' = Pv'
1
ƱPST D, (8.13) 

where T represents the affine transform matrix and . Ʊ denotes the affine trans-
formation between two point patterns. Besides, we also need the inverse affine 
transformation to restore the original face position, and it is formulated as 

.T −1 = PST DƱPv1 , T '−1 = PST DƱPv'
1
, (8.14) 

where .T −1 represents the inverse transform matrix. 

8.4.5 The Entire IdentityMask Pipeline 

Our pipeline consists of a de-identification process and a recovery process (see 
Fig. 8.2). 

The de-identification process takes the original clean video . V = (v1, v2, · · · , vn)

as input. First of all, it is sent into the Motion Flow Module, where the motion flow 
generator generates the relative motion flow between every two adjacent frames, 
which is formulated as 

.M(V ) = (m1,m2, · · · ,mn−1). (8.15) 

Based on this, the first frame . v1 firstly enters the Affine Transformation Module to 
generate the affine transform matrix T and the inverse affine transform matrix . T −1

(see Eqs. (8.13) and (8.14)). Then the image . vt
1 that lies in the “standard” distribution 

is obtained via 

.vt
1 = v1 · T . (8.16) 

This warped first frame . vt
1 is sent to the Protection Module, through which the real 

identity is concealed and a new identity .rnew conditioned on the Ukey is generated. 
We denote 

.v
p,t

1 = F(rnew, rattr (v
t
1)). (8.17) 

Next, the de-identified frame .vp,t

1 restores to the same layout as the original input 
. v1 through an inverse affine transformation:
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.v
p

1 = v
p,t

1 · T −1. (8.18) 

In order to preserve the original background, a background mask .Mbg is generated 
by applying a black image .M0 whose dimension is the same as the input . v1 through 
two affine transformations, which is denoted as 

.Mbg = M0 · T · T −1. (8.19) 

With the help of .Mbg , we can get the de-identified first frame: 

.v'
1 = vp,1 · (1 − Mbg) + v1 · Mbg. (8.20) 

Finally, we can obtain the entire identity-protected video .V ' = (v'
1, v

'
2, · · · , v'

n) on 
the basis of the successfully de-identified first frame . v'

1 and the relative motion flow 
.M(V ). Specifically, for .1 < i ≤ n: 

.v'
i = v'

i−1 ⊛ mi−1, (8.21) 

where . ⊛ denotes the inference of . v'
i with the former de-identified frame .v'

i−1 and 
the relative motion flow .mi−1. 

The de-identification process is summarized in Algorithm 2. The recovery 
process is similar except that the Protection Module is replaced by the Recovery 
Module and is summarized in Algorithm 3. 

Algorithm 2 De-identification process 
Input: Original non-protected video V = {vi}n 

i=1, Ukey.  
Output: De-identified video V ' = {

v'
i

}n 
i=1. 

1: Generate the relative motion flow M(V ) = {mi}n−1 
i=1 

2: Generate affine transform matrixes T in Eq. (8.13) and T −1 in Eq. (8.14). 
3: Generate background mask Mbg with black image M0: 

Mbg = M0 · T · T −1. 
4: while i = 1 do 
5: vt 

1 = v1 · T .  
6: Generate new identity embedding rnew with Ukey in Eq. (8.6) and de-identify the affined 

first frame: 
vt 
p,1 = F(rnew, rattr (v

t 
1)). 

7: Restore the original layout: v p 
1 = v p,t 

1 · T −1. 
8: Generate de-identified first frame with preserved background: 

v'
1 = v p 

1 · (1 − Mbg) + v1 · Mbg. 
9:  i = i + 1.  

10: end while 
11: for 1 < i  ≤ n do 
12: v'

i = v'
i−1 ⊛ mi−1. 

13: i = i + 1. 
14: end for 
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Algorithm 3 Recovery process 

Input: De-identified video V ' = {
v'
i

}n 
i=1, key.  

Output: Right recovered video Vr =
{
vr,i

}n 
i=1 or wrong recovered video Vw =

{
vw,i

}n 
i=1. 

1: Generate the relative motion flow M(V ') = {
m'

i

}n−1 
i=1 

2: Generate affine transform matrixes T ' in Eq. (8.13) and T '−1 in Eq. (8.14). 
3: Generate background mask Mr 

bg with black image M0: 

Mr 
bg = M0 · T ' · T '−1. 

4: while i = 1 do 
5: v p,t 

1 = v'
1 · T .  

6: if key_is_right then 
7: Recover the right identity embedding rrid with key in Eq. (8.9) and correctly restore the 

affined first frame: 
v r,t r,1 = F(rrid , rattr (v p,t 

1 )). 
8: Restore the original layout: vr 

r,1 = v r,t r,1 · T '−1. 
9: Generate right recovered first frame with preserved background: 

vr,1 = vr 
r,1 · (1 − Mr 

bg) + v'
1 · Mr 

bg. 
10: i = i + 1. 
11: else 
12: Recover a wrong identity embedding rwid with key in Eq. (8.9) and wrongly restore the 

affined first frame: 
v r,t w,1 = F(rwid , rattr (v p,t 

1 )). 
13: Restore the original layout: vr 

w,1 = v r,t w,1 · T '−1. 
14: Generate wrong recovered first frame with preserved background: 

vw,1 = vr 
w,1 · (1 − Mr 

bg) + v'
1 · Mr 

bg. 
15: i = i + 1. 
16: end if 
17: end while 
18: for 1 < i  ≤ n do 
19: vx,i = vx,i−1 ⊛ m'

i−1, x  ∈ {r, w} . 
20: i = i + 1. 
21: end for 

8.5 Implementation 

In this section, we introduce the promising module instantiations and their training 
process in more detail. 

8.5.1 Identity Disentanglement Network Configuration 

As mentioned in Sect. 8.4, both the Protection and the Recovery Module are estab-
lished on the condition of identity disentanglement. Our identity disentanglement 
network contains an identity encoder . Eid , an attribute encoder .Eattr , and a fusion 
network . F, which are pretrained as a whole on the CelebA-HQ dataset [39].
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Fig. 8.4 The detailed architecture of the identity disentanglement network in the proposed 
Protection Module and Recovery Module with geometrical interpretation of identity changes. Each 
point on the sphere represents one normalized feature. Different colors denote different identities 

Identity Encoder As existing studies on face verification and recognition have 
made arduous efforts in finding discriminative face features for face identification, 
we employ a pretrained state-of-the-art (SOTA) face recognition model [40] as  
our identity encoder. It can provide highly discriminative features for identity 
verification to avoid training from scratch and has a clear geometric interpretation 
due to the exact correspondence to the geodesic distance on the hypersphere. Given 
an original face image X, the identity representation .rid is defined to be the last 
normalized feature vector before the final FC layer, which is denoted as 

.rid (X) = Eid(X). (8.22) 

It is believed that all the embedding features . rid are distributed around each feature 
center on a normalized 512-D hypersphere [40]. Figure 8.4 shows the feature 
distribution visualization of identity changes. Each point on the sphere represents 
one normalized feature. Different colors denote different identities. 

Attribute Encoder Attribute representation, which determines pose, expression, 
overall structure, background, and so on, intuitively carries more spatial information 
than identity. Therefore, in order to preserve different level details, we construct a
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Table 8.3 Network structures of identity encoder, attribute encoder, and fusion network 

Identity 
encoder Attribute encoder Fusion network 

Model [40] BU . ×2 ConvT 4. ×4,2,1 BN+LR 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN. +LR AAD(1024,1024) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(1024,1024) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(1024,1024) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(1024,512) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(512,256) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(256,128) BU . ×2 

Conv 4. ×4,2,1 BN. +LR CON ConvT 4. ×4,2,1 BN+LR AAD(128,64) BU . ×2 

AAD ResBlk(64,3) BU . ×2 

Conv 4. ×4,2,1 represents a convolutional layer with kernel size 4, stride 2, and padding 
1. BU represents the BilinearUpsample operation. ConvT 4. ×4,2,1 represents a transposed 
convolutional layer with kernel size 4, stride 2, and padding 1. CON represents feature map 
concatenating. AAD(. cin, .cout ) represents an AAD ResBlk with input and output channels of . cin

and .cout . All LeakyRELUs have . α = 0.1

U-Net-like structure with a depth of 8, and then use the 8 feature maps generated 
from the U-Net decoder as the attributes representations .rattr . More formally, we 
denote 

.rattr (X) = Eattr (X) =
{
r1
attr (X), r2

attr (X), · · · , r8
attr (X)

}
, (8.23) 

where .rk
att (X) represents the k-th level feature map from the U-Net decoder. 

Fusion Network The fusion network F is required to implement face reconstruc-
tion based on .rid and .rattr . Previous research [41] has verified that direct feature 
concatenation can easily lead to blurry results and is not expected to be used. 
To solve this problem, the novel Adaptive Attentional Denormalization (AAD) 
ResBlk [42] has been proposed to improve feature integration in multiple levels. We 
integrate 8 cascaded AAD ResBlks to the body of our fusion network, in order to 
adjust the attention regions of . rid and .rattr , so that they can harmoniously participate 
in synthesizing different facial parts. And we can get the reconstructed face . X' as 

.X' = F(rid(X), rattr (X)). (8.24) 

The network structure is summarized in Table 8.3. 
The whole training process is discussed in the following. 

Training Process We use the identity consistency loss .Lid to make sure the 
identity of the reconstructed face . X̂ still keeps the same: 

.Lid = 1 − rid(X') · rid(X)

‖rid(X')‖2 · ‖rid(X)‖2
. (8.25)
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Here cosine similarity is chosen because it best fits our angular margin based identity 
encoder [40]. 

We also define the attributes consistency loss .Lattr , which can be formulated as 

.Lattr = 1

2

n∑

k=1

∥∥∥rk
attr (X

') − rk
attr (X)

∥∥∥
2

2
. (8.26) 

This loss function has been proved to encourage the generated images to be 
perceptually similar (but not identical) to the target image [43]. We tried other 
methods (.L1 distance, Huber loss, and cosine similarity) to measure attributes 
similarity; however, . L2 distance performs best. 

If the restored result . X' is generated with the same .rid and .rattr , it should be 
as similar to the original image as possible. We set pixel-level .L2 distance as the 
reconstruction loss: 

.Lrec = 1

2

∥∥X' − X
∥∥2

2 . (8.27) 

We take advantage of adversarial learning to train the framework and introduce 
the adversarial loss .Ladv to constrain the generated results indistinguishable from 
real images. To promote the image quality, it is necessary to expand the perception 
range of the discriminator, so we adopt m multiscale discriminators [44] with hinge 
loss functions for different resolution versions of the generated image. 

.Ladv(X
'
m,Xm) = log(D(Xm)) + log(1 − D(X'

m)), (8.28) 

where .Xm indicates the low-resolution image after m-th downsampling. 
The total loss function is the weighted sum of the above losses, which can be 

formulated as 

.Ltotal = Ladv + λattrLattr + λidLid + λrecLrec, (8.29) 

where .λatt , . λid , and .λrec are the weight parameters for balancing different terms. 
In the training process, we use the Adam optimizer [45] with momentum 

parameters .β1 = 0, β2 = 0.999. The learning rate is set to .4×10−4. The parameters 
in Eq. (8.29) are set to .λatt = λrec = 10, λid = 5. 

8.5.2 Other Implementation Details 

In the Motion Flow Module, we employ a pretrained CNN [46] as our motion flow  
generator to model the relative dense motion flow. In the Affine Transformation 
Module, we calculate the 5 keypoints (left/right eye, leftmost/rightmost tip of the 
mouth, and nose) of all faces in CelebA-HQ dataset by [47] and compute the
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average as the standard point pattern. Then the Umeyama algorithm [48] is utilized 
to calculate the affine transform matrixes between two point patterns. 

8.6 Experiments 

8.6.1 Experimental Setup 

Dataset We choose the VoxCeleb dataset [49], which contains 22,496 videos 
extracted from YouTube, to demonstrate the effectiveness of our reversible face 
video de-identification method. After preprocessing like [46], we obtain 12,775 
videos with lengths varying from 64 to 1024 frames, which are resized to . 256×256
preserving the aspect ratio. For simplicity, we use the ID number annotated in the 
dataset as Ukey and define the right key as a number equal to the Ukey, while a 
random number other than the Ukey is generated as the wrong key. 

Comparison Methods To validate the effectiveness of the proposed IdentityMask, 
we compare to three SOTA methods: ACTION [4], LIVE [5], and CIAGAN [6]. 

Evaluation Metrics We evaluate the proposed IdentityMask in terms of two 
metrics, as described below: 

(1) Privacy metrics. We measure the cosine similarity of embedding vectors from 
the generated and original face extracted by pretrained face recognition model, 
denoted as CSIM, to evaluate the quality of identity protection and restoration. 
For a fair comparison, we employ the well-known FaceNet identification 
model [50], which is excluded from our training model and pretrained on two 
public datasets (CASIA-Webface [51] and VGGFace2 [52]), respectively. 

(2) Utility metrics. With today’s advanced technology, ensuring that the faces in a 
synthesized video can still be detected is very trivial [53]. Therefore, instead 
of using the face detection rate, we borrow several metrics that have been 
commonly used in face swapping and face reenactment tasks. They are designed 
exactly for videos to evaluate the utility performance. Specifically, the L2 
distances between pose and expression vectors from the generated and original 
face extracted by an open-sourced pose estimator [54] and a 3D facial model 
[55] are calculated as pose (denoted as POSE) and expression (denoted as 
EXP) similarity. The FID score is chosen to evaluate the generation quality 
as it can measure the distance between the generated distribution and the real 
distribution. In addition, we evaluate whether the motion of the input video is 
preserved by computing the average distance of facial landmark keypoints [56] 
from the generated and original face, which is denoted as AKD. 

Unless otherwise specified, each metric is calculated independently for each 
frame.
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8.6.2 Comparison in De-identification 

In this subsection, we compare our IdentityMask with state-of-the-art face de-
identification methods. 

The qualitative comparison with ACTION [4] and CIAGAN [6] is shown in  
Fig. 8.5, while the quantitative results are shown in Table 8.4. It can be seen that 
the faces generated by ACTION are too visually similar to the original faces, which 
makes it easy for people to think that they are still the same person and thus does 
not realize the identity protection from human beings. Besides, incomprehensible 
artifacts and blurs with light or dark bounding boxes often occur, resulting in 
obvious video jitter. This makes it difficult to share the generated videos online. In 
addition, the crucial CSIM value is high, which implies that ACTION is vulnerable 
to the identification of advanced face verification model. 

We can see that the frames generated by CIAGAN can maintain some basic 
face attributes as well as the rough head orientation, but most of which are not 
visually similar to the original. These de-identified faces can effectively hide the 
true identity information from both human eyes and machines. However, distortions 

Fig. 8.5 Qualitative comparison on the VoxCeleb for face de-identification. The first row shows 
the original face video frames, and the second to fourth rows show the faces anonymized by 
ACTION [4], CIAGAN [6], and our method, respectively 

Table 8.4 Quantitative comparisons of identity protection on VoxCeleb. The best results are in 
bold. . ↑ means higher is better, and . ↓ means lower is better 

CSIM. ↓
Method CASIA VGGFace2 POSE.↓ EXP.↓ FID.↓ AKD. ↓
ACTION 0.904 0.869 2.45 2.69 19.34 1.60 

CIAGAN 0.520 0.507 14.69 8.23 31.50 4.16 

Ours 0.518 0.503 2.45 2.64 18.70 1.58
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and artifacts often occur. When the characters perform large poses or expressions, 
there will even be large deformation. These are very unfavorable to the video. As 
can be seen from Table 8.4, its utility metrics deteriorate significantly, which will 
make the synthesized videos hard to meet the requirement for online sharing. 

In contrast, our method produces more natural looking images that achieve a 
great advantage in visual similarity to the input frame with visually perceptible 
changes and enables de-identification for both human beings and machines. Fur-
thermore, from Table 8.4, the lowest CSIM value indicates that our method is 
superior to the compared method in protecting the real identity. Meanwhile, the 
best performance under utility metrics shows that our method also well preserves 
the nonidentity aspects of the original frame, i.e., pose, expression, facial motion, 
and overall structure. So we can best ensure the subsequent normal use of the de-
identified faces. 

A comparison with the work of LIVE [5] is given in Fig. 8.6. Our results are at 
least visually as good as the original ones, despite having to run on the cropped faces 
extracted from the paper PDF. 

To make the comparison more convincing and fairer, we follow the evaluation 
protocol that has been used in [5] and [6], which is conducted on the LFW 
benchmark. Specifically, two FaceNet identification models (pretrained on CASIA-
Webface and VGGFace2, respectively) are employed, and the main evaluation 
metric is the true acceptance rate. Table 8.5 presents the results on de-identified 
LFW image pairs for a given person, while the de-identification method is applied 
to the second image of each pair. It can be seen that all methods can significantly 
reduce the true positive rate. In particular, our method achieves the best privacy 
protection. 

Fig. 8.6 Comparison of the de-identified faces between LIVE [5] and our method 

Table 8.5 Quantitative 
evaluation with Sota methods 
on LFW datasets 

True positive rate. ↓
Method CASIA VGGFace2 

Original 0.965 . ± 0.016 0.986 . ± 0.010 

ACTION 0.696 . ± 0.015 0.714 . ± 0.014 

LIVE 0.035 . ± 0.011 0.038 . ± 0.015 

CIAGAN 0.019 . ± 0.008 0.034 . ± 0.015 

Ours 0.017 . ± 0.011 0.026 . ± 0.014
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8.6.3 Analysis in Identity Recovery 

In this subsection, we evaluate our performance in identity restoration. The effect of 
one original video being de-identified and recovered, respectively, with the right 
and wrong keys (denoted as “R. _key” and “W. _key”) is presented in Fig. 8.7. It  
can be seen that the identity-protected frames obtain a new identity, while still 
maintaining a high visual similarity (i.e., appearance, pose, expression, and facial 
motion), which ensures the rationality of subsequent use. Then the right key can 
restore a video that is exactly similar to the original video with the real identity, 
while the wrong key can restore a realistic video with another new identity different 
from the original identity. Moreover, each wrong key maps to a unique identity. In 
this way, we provide security via ambiguity: Even if a privacy intruder guesses the 
correct key, it is extremely difficult to know that without having access to any other 
identity revealing meta-data, since each key—regardless of whether it is correct or 
not—always leads to a different realistic identity. In particular, the effect of being 
recovered by multiple wrong keys is shown in Fig. 8.8. 

The quantitative results of identity recovery are shown in Table 8.6. It shows that 
after de-identification: (1) The original identity can be recovered excellently with 

Fig. 8.7 Qualitative results of our method about identity protection and identity recovery on the 
VoxCeleb dataset 

Fig. 8.8 Qualitative results of identity recovery when given multiple wrong keys. The black 
background indicates the original videos, and the red background indicates the wrong recovered 
videos



168 8 Deep Motion Flow Guided Reversible Face Video De-identification

Table 8.6 Quantitative results of identity recovery on VoxCeleb 

CSIM 

Method CASIA VGGFace2 POSE.↓ EXP.↓ FID.↓ AKD. ↓
R. _key 0.961 0.959 1.62 1.59 8.50 1.34 

W. _key 0.475 0.461 2.75 2.96 23.18 1.61 

Table 8.7 Quantitative experimental results of right recovery quality on VoxCeleb 

LPIPS.↓ PSNR.↑ SSIM.↑ MAE. ↓
R. _key 0.077 25.492 0.875 0.036 

the correct key, which is conducive to the supervision of network abnormal events; 
(2) When given the wrong key, it is almost impossible to restore the original identity; 
(3) Whether the video is recovered by the right or wrong key, its utility is always 
impressive. 

To better evaluate the right recovery quality, we apply LPIPS (learned perceptual 
image patch similarity) distance [57] to measure perceptual similarity, PSNR (peak 
signal-to-noise ratio) [58], and MAE (mean absolute error) to measure distortion 
at the pixel level, and SSIM (structural similarity) [59] to measure the structure 
similarity. The results in Table 8.7 demonstrate that the right recovered frames 
are extremely similar to the original frames, which is consistent with the intuitive 
expectation. To the best of our knowledge, IdentityMask is the first work to achieve 
de-identified face video restoration, so the above results are summarized as the 
baseline for future research. 

8.6.4 Model Analysis and Discussions 

In this subsection, considering the de-identification process V .→ .V ' and the 
recovery process .V '

. →, V are symmetrical, while previous comparison methods 
can only do de-identification, we take the former as the example: 

(1) Motion Flow Module Selection. We pick and compare three SOTA motion flow 
modelling methods: STD [46], RLT [46], and AVD [60]. STD computes the deep 
motion flow between input and output videos frame by frame. RLT calculates 
the deep motion flow between every two adjacent frames of the input video first 
and then applies this relative dense motion flow to the first frame of the output 
video. AVD also computes the deep motion flow between input and output 
videos frame by frame, except it disentangles the shape and pose of objects 
in the region space and forces decoupling of foreground from background. 
Different motion flow modelling methods are suitable for different application 
scenarios. STD directly transfers object shape from the input video into the 
generated video, while the RLT requires that objects be in the same pose in the 
first frame of the input and output videos, and the AVD is designed specifically
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Fig. 8.9 Quantitative comparison on the Voxceleb of the influence of different Motion Flow 
Module. The first row is the original frames. The second to fourth rows demonstrate results when 
using STD [46], AVD [60], and RLT [46] 

Table 8.8 Quantitative evaluation of the Motion Flow Module 

CSIM. ↓
Method CASIA VGGFace2 POSE.↓ EXP.↓ FID.↓ AKD. ↓
STD 0.522 0.513 2.45 2.62 20.96 1.59 

AVD 0.520 0.507 2.53 2.78 22.11 1.61 

RLT(ours) 0.518 0.503 2.45 2.64 18.70 1.58 

for videos of articulated objects. Since the face is exactly in the same pose in the 
first frame of the input and synthesized video in either de-identification process 
or recovery process, the RLT is theoretically the best motion flow modelling 
method for IdentityMask. Figure 8.9 and Table 8.8 reveal the qualitative and 
quantitative results of the influence of the Motion Flow Module. We can see that 
if STD is used, the synthesized face can retain a slightly more similar expression 
to the original face than using RLT. However, the transfer of the original face 
shape leads to a decline of privacy protection ability, while lower FID and AKD 
values also indicate poorer generation quality and motion flow modelling. In 
addition, the background of the generated face has severe distortion. If AVD 
is used, not only the eyes and mouth have obvious distortion, but also all the 
quantitative metrics are worse than employing RLT. Therefore, RLT is the best 
choice of our Motion Flow Module. 

(2) Ablation Study. We take two variants of the proposed IdentityMask pipeline 
for ablation study in order to validate effectiveness of Affine Transformation 
Module and Motion Flow Module. Specifically, w/o AT indicates the variant 
without the Affine Transformation Module, and w/o MF indicates the variant 
without the Motion Flow Module, which means that the input videos have to 
be processed frame by frame. We let .“ours” indicate the full model. Figure 8.10 
shows the qualitative results and Table 8.9 presents the quantitative comparison. 
It can be seen that w/o AT generates a very casual face contour and results 
in a substantial decline in data utility. This is unacceptable for media users. 
As for w/o MF, although it can protect identity slightly better than the full
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Fig. 8.10 Ablation study on the Voxceleb of our method. The first row is the original frames, the 
second row to the fourth row show the corresponding de-identified results of w/o AT (the model 
without the Affine Transformation Module), w/o MF (the model without the Motion Flow Module) 
and the full model 

Table 8.9 Ablation study of the proposed IdentityMask pipeline 

CSIM. ↓
Method CASIA VGGFace2 POSE.↓ EXP.↓ FID.↓ AKD. ↓
w/o AT 0.376 0.368 22.58 10.27 43.04 3.96 

w/o MF 0.513 0.492 2.50 2.71 20.47 2.24 

Ours 0.518 0.503 2.45 2.64 18.70 1.58 

model, its pose and expression are less similar to the original video. Also, its 
image quality is poor, especially the preservation of facial movements. These 
will render the synthesized video unfavorable for subsequent identity-agnostic 
use. Therefore, each module in our method is indispensable, and only the full 
model can achieve the most wonderful de-identified effects without affecting 
the subsequent identity-agnostic use. 

(3) Parameter Selection. In this subsection, the performance variation of de-
identification with respect to the controllable parameter . θ is studied. We conduct 
a group of identity protection experiments with respect to the parameter . θ . 
During the test, we randomly select 1000 videos from the VoxCeleb dataset 
and change . θ from 0 to 90 for each video to synthesize the corresponding de-
identified videos. Figure 8.11 shows the qualitative results. It can be observed 
that with the increase of . θ , the visual identity difference between the synthetic 
faces and the original faces expands, while the identity-independent attributes 
are still maintained. Here, both the privacy metrics and the utility metrics 
are used to evaluate the overall identity protection effect and are shown in 
Fig. 8.12. It can be seen that the degree of identity protection can be adjusted, 
accompanied by utility variations. Considering the identity protection effect 
and the utility performance comprehensively, we set . θ to 60 for all other 
experiments. 

(4) Computational Overhead Analysis. We explore the contribution of the Motion 
Flow Module to saving computational overheads in de-identification tasks. We
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Fig. 8.11 De-identified results with variant parameter . θ values 
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Fig. 8.12 The performance variation of de-identification with respect to the parameter . θ . The x-
axis indicates . θ value, and the y-axis indicates the metric values 

compare with ACTION and CIAGAN on an NVIDIA GTX 1080 Ti, and the 
results are shown in Fig. 8.13. We observe that when the number of video frames 
is greater than 80, our method has a lower computational complexity than 
ACTION, and when the number of video frames is greater than 360, our method
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Fig. 8.13 Comparison of computational overheads between ACTION [4], CIAGAN [6], and our 
method on the VoxCeleb dataset 

Table 8.10 Security analysis 
of the proposed IdentityMask 

Method CViT [61] LRNet [62] 

Fake video detection rate 74.8% 63.1% 

is less computationally complex than CIAGAN. Since the complexity of per-
frame processing is almost linear with the number of frames, this advantage 
becomes more obvious as the number of video frames increases. It demonstrates 
the superiority of motion flow guided evaluation over per-frame processing. 

(5) Security Analysis. Previous experimental results have shown that IdentityMask 
can generate realistic identity-protected videos. However, we are worried about 
the potential misuse. Once abused, even if the authority can obtain the real 
identity through the recovery process, unpleasant effects (such as fraud) in the 
dissemination process may have occurred. Therefore, we apply two advanced 
deepfake detection models, CViT [61] and LRNet [62], to examine the security 
of IdentityMask. We calculate the proportion of de-identified videos that are 
judged as fake and name it as the fake video detection rate. As shown in  
Table 8.10, the probability of the synthetic videos being judged as “deepfake” is 
relatively high, which proves that our identity protection technology has good 
security despite its SOTA utility performance. 

8.7 Conclusions 

In this chapter, we have proposed a reversible face video de-identification frame-
work, IdentityMask, guided by deep motion flow. Our framework consists of a 
de-identification process and a recovery process. The former is able to conceal the 
real identity with a visually similar appearance in a seamless way, and the latter
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aims to recover the original identity only when given the right key. The proposed 
framework is the first one suitable for reversible face video de-identification. It 
presents a quality that surpasses the literature methods in the de-identification task 
and is impressive in the identity recovery process. Besides, instead of existing 
per-frame processing, we take advantage of motion flow to guide consecutive 
frames generation, which alleviates the computational overhead and improves the 
synthesis effect. Extensive experimental results on a standard diverse dataset verify 
the effectiveness and efficiency of our framework. 

While our reversible face video de-identification results are visibly convincing, 
additional improvements are possible. As part of our future work, we plan to 
elaborate the mapping function between Ukey and right key to further enhance the 
security of identity protection. 
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Chapter 9 
Future Prospects and Challenges 

9.1 Future Prospects and Open Research Questions 

In this section, we provide a summary of the main challenges and open issues asso-
ciated with face de-identification methods and outline potential future directions. 

Privacy Guarantees with High Utility Ensuring provable privacy is a crucial 
aspect of face de-identification methods [1]. Existing privacy metrics like k-
anonymity are based on strong assumptions and may not adequately address 
real-world problems [2]. Combining privacy theory with deep learning technology 
to enhance the measurement and interpretability of de-identification algorithms is 
an important avenue for improvement [3]. In addition, striking the right balance 
between preserving the utility of the data and ensuring privacy is a constant 
challenge. De-identification techniques should provide sufficient protection while 
retaining essential information for legitimate use cases. 

Evaluation Metrics Despite the summary of commonly used evaluation metrics 
in Chap. 3, existing metrics often fail to comprehensively quantify the performance 
of de-identification algorithms. Many utility metrics rely on the similarity between 
de-identified results and the original images. The absence of a universally accepted 
evaluation system or indicator for de-identification highlights the need for proposing 
new evaluation criteria tailored to the characteristics of these algorithms, which will 
drive further development in this field. 

Generalization Capability of Algorithms Some algorithms rely on the pretrained 
face recognition model to obtain identity embeddings, especially Generative Model-
Based Identity Modification algorithms [4–8] and adversarial perturbation [9]. 
While the former group demonstrates better generalization, the latter is often 
effective only for specific face recognition models. Moreover, deep neural networks 
(DNNs) are heavily influenced by datasets. Face de-identification models should 
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generalize well across different datasets. Ensuring that a model trained on one 
dataset can effectively de-identify faces in another dataset is a significant challenge. 

Integration with Real-Life Applications The de-identification algorithms mainly 
target the image processing stage, while privacy protection can be achieved from 
image acquisition, storage, publishing, and other aspects through a more complete 
system design in reality. It is also very meaningful for the development of related 
deep learning technologies to generate datasets without privacy threats by face 
de-identification technology. On the other hand, applying face de-identification 
techniques in real-world, dynamic settings, such as video streams and live surveil-
lance [10, 11], presents unique challenges. Ensuring real-time de-identification 
while maintaining accuracy is a complex task. 

Controllable and Fine-Grained Privacy Different levels of de-identification are 
expected in distinctive scenarios, and the needs of various users are disparate 
even in the same scene. Therefore, an ideal face de-identification method should 
be adjustable and controllable to adapt to a wide range of application scenarios. 
Separating the protection process from the network training may be an effective way 
to improve the flexibility of the algorithm. Considering special circumstances such 
as crime tracking, we prefer to use the original images rather than the de-identified 
ones in some cases. At present, most studies focus on the protection process, while 
only a few can achieve recoverable de-identification. We think it is also meaningful 
to consider the restoration process in the future. 

Moreover, achieving more fine-grained processing focused on identity protection 
can lead to enhanced effectiveness and utility. Separation and operation of identity-
related elements can offer better protection under similar levels of disturbance. 
The challenge here lies in disentangling identity from attributes, an active area of 
research that includes exploring more explicit latent spaces, developing comprehen-
sive identity representations, and introducing contrast loss in training. 

Ethical and Regulatory Compliance Addressing the ethical implications of face 
de-identification is vital. Researchers must consider the broader societal impacts of 
their work, such as potential biases and fairness issues. In addition, keeping up with 
evolving privacy regulations and ensuring that de-identification methods comply 
with these regulations can be challenging. Researchers need to stay informed about 
legal requirements. 

Broader De-identification on Other Biometric Information With the devel-
opment of biometric recognition technology, the information that can be used 
for identification is not limited to face images [12]. Beyond faces, extending 
de-identification techniques to other biometric modalities also poses interesting 
challenges: 

• Voice de-identification—Removing identifying vocal cues while preserving 
naturalness and intelligibility of speech is difficult. 

• Gait de-identification [13]—Anonymizing motion patterns in video while main-
taining natural walking/running styles is an open problem.
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• Fingerprint de-identification—Obscuring unique patterns in fingerprints or iris 
scans in a reversible way for authentication is unsolved. 

• Multimodal de-identification—Jointly de-identifying faces, voice, gait, etc., in a 
coordinated way to maximize anonymity remains largely unexplored. 

• Cross-modal de-identification—Transferring de-identification across modalities, 
e.g., de-identified faces to voices, presents cross-domain challenges. 

9.2 Technical Challenges 

9.2.1 Low-Complexity and Real-Time De-identification 
Methods 

Improving the efficiency and real-time performance of face de-identification models 
would enable many more valuable applications. This might be achieved by holisti-
cally combining model, software and hardware optimizations tailored for real-time 
usage. But there are technical challenges to be solved: 

• Model Compression Tradeoffs—Techniques like pruning and quantization can 
improve efficiency but may hurt model accuracy. Balancing compression rate, 
speedup, and maintained accuracy is challenging. 

• Hardware Constraints—Optimizing for target hardware like smartphones and 
embedded devices with limited memory, compute, and power is difficult. Models 
need hardware-aware codesign. 

• Generalizability vs. Efficiency—Highly compressed models may fail to gener-
alize well to new data distributions. Maintaining robustness with efficiency is 
tricky. 

• Software Optimizations—Model efficiency alone is not sufficient. Efficient 
pre/postprocessing and software optimization are crucial but difficult. 

Overall, balancing speed, accuracy, robustness, and fairness simultaneously for real-
time face de-identification remains an impactful yet challenging research direction. 

9.2.2 Preventing Reverse Engineering Attacks of De-identified 
Faces 

Protecting de-identified faces from adversarial attacks that aim to reverse engineer 
or reconstruct the original identity. Here are some key technical challenges: 

• Generative Model-Based Attacks—Generative models like GANs and diffusion 
models can generate highly realistic faces. Defending against generative adver-
sarial network (GAN)-powered reconstruction attacks is an arms race.
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• Cross-Database Recognition—Even without exact reconstruction, linking de-
identified faces to identities in other databases poses risks. Avoiding cross-DB 
leaks is tricky. 

• Reidentification—Using auxiliary information, attackers could reidentify 
anonymized faces. Real-world environments and data distributions make reversal 
attacks more feasible. Developing robust and provable anonymity is an open 
problem. 

In summary, developing theoretically grounded, empirically robust defenses against 
adversarial reversed engineering of face de-identification systems in real-world 
conditions remains a significant open research problem. 

9.2.3 Moving Beyond Supervised Learning on Limited Datasets 

Overreliance on supervised learning is a limitation for advancing face de-
identification research. Here are some key technical challenges in moving beyond 
supervised learning: 

• Limited Labelled Data—Collecting large datasets with labels for de-
identification is expensive and impedes progress. Reducing reliance on labelled 
data is key. 

• Data Imbalance—Performance of de-identification methods can vary widely 
across different demographic groups, image types, etc. Generalizable techniques 
that work across diverse real-world data are needed. Biased datasets cause poor 
minority group performance. Correcting imbalance without labels is an open 
problem. 

• Semi/self-supervised learning: Consistency regularization strategies for semisu-
pervised learning have hyperparameters that require tuning, while for self-
supervised learning, pretraining tasks like contrastive learning may still require 
large labelled datasets for fine-tuning. 

In summary, safely and effectively leveraging unlabelled or weakly labelled 
data for model generalization, robustness, and fairness—while still quantifying 
performance—remains a key challenge for advancing face de-identification. 

9.2.4 Multimodal De-identification 

Multimodal de-identification, involving anonymizing multiple biometrics like face, 
voice, gait, etc., together, poses some unique technical challenges: 

• Correlated Modalities and Cross-Modal Consistency—Face, voice, and body 
language are often highly correlated. Jointly decorrelating them is tricky. On
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the other hand, maintaining natural coherence across de-identified modalities is 
challenging. 

• Heterogeneous Data and Domain Gap—Synchronizing different frame rates, 
resolutions, and capture conditions for multibiometric data is difficult. Also, 
adaptively understanding and preserving the minimum identifying information 
across modalities is an open problem. In addition, joint distributions seen during 
training may differ significantly from deployment, causing coherence failures. 

• Disentangled Representations—Learning disentangled representations for isolat-
ing and selectively de-identifying identity factors poses challenges. 

• Computational Complexity—Multistream models for multiple biometrics can be 
resource-intensive. 

• Security—With multiple points of attack, ensuring equivalent protections across 
modalities is nontrivial. 

Robustly de-identifying multiple biometrics while preserving utility and naturalness 
in real-world conditions remains an open multifaceted research problem requiring 
interdisciplinary perspectives. 
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Chapter 10 
Conclusion 

In the digital age, the proliferation of facial recognition technology has raised 
significant concerns about the privacy and security of individuals. Our book, “Face 
De-identification: Safeguarding Identities in the Digital Era,” explores the critical 
topic of face de-identification techniques and their importance in preserving privacy 
and protecting identities. 

Reflecting on our journey, we began by introducing the motivations behind face 
de-identification and the need to balance the pervasive use of facial recognition. We 
covered the fundamentals of face recognition and de-identification, setting the stage 
for subsequent discussions. 

Part I delved into various face de-identification techniques, including obfus-
cation, k-Same, adversarial perturbation, and deep generative models. We also 
discussed evaluation metrics to measure privacy protection and utility preservation. 

Part II featured in-depth analyses of specific methods and applications. We 
presented techniques like differential private k-anonymity, differential privacy for 
face images, personalized invertible de-identification, and high quality explainable 
models. Each method offered unique approaches to the challenge. 

In our concluding Part III, we explored future prospects and challenges in 
face de-identification. The book touched on open research questions and technical 
challenges warranting further exploration. As technology evolves, so must our 
privacy preservation methods. 

In summary, this book serves as a comprehensive guide on face de-identification 
for researchers, professionals, and policymakers. Our goal is to advance knowledge 
and contribute to the responsible use of facial data in an era where privacy and 
identity protection are paramount. 

As challenges continue to evolve, protecting identities will remain fundamental. 
We encourage readers to stay vigilant, innovative, and dedicated to safeguarding 
identities in the digital era. 
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Glossary 

3D Morphable Model 3D Morphable Model (3DMM) is a statistical model used 
in computer vision and computer graphics to represent and analyze variations 
in facial shape and appearance within a population. It serves as a compact and 
versatile representation of facial geometry and texture, enabling the synthesis, 
analysis, and manipulation of facial shapes and textures. 

Deep Generative Network A Deep Generative Network is a type of deep learning 
architecture that focuses on generating new data samples that are similar to those 
in the training dataset. These networks aim to model the underlying distribution 
of the training data and then generate synthetic data points that mimic the 
characteristics of the original dataset. 

Deep Learning Deep learning is a subset of machine learning that utilizes artificial 
neural networks composed of multiple layers to extract and transform features 
from input data. It aims to model high-level abstractions in data using complex 
architectures consisting of many layers, allowing hierarchical representation 
learning. 

Deep Neural Network A Deep Neural Network (DNN) is a type of artificial neural 
network (ANN) characterized by multiple layers between the input and output 
layers. It is designed to model complex patterns and relationships within data by 
utilizing a hierarchical or layered structure. 

Differential Privacy Differential privacy is a framework and concept in data 
privacy and data analysis aimed at providing strong privacy guarantees for 
individuals while allowing useful information to be extracted from datasets. It 
ensures that the inclusion or exclusion of any single individual’s data in a dataset 
will not significantly affect the outcome of queries or analyses. 

Face De-identification Face de-identification, also known as face anonymization 
or face blurring, refers to the process of obscuring or modifying facial features 
in images or videos to protect the identity and privacy of individuals depicted in 
the visual content. 
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Face Recognition Face recognition is a biometric technology that involves identi-
fying or verifying individuals by analyzing and recognizing their facial features 
or patterns. It is a computer vision technology used in image analysis to 
automatically detect, locate, extract, and match facial characteristics from digital 
images or video frames. 

Neural Radiance Field Neural Radiance Fields (NeRF) is a recent and innovative 
method in computer graphics and computer vision for synthesizing highly 
detailed and photo-realistic 3D scenes from 2D images or image collections. 
NeRF allows for the creation of immersive and realistic 3D representations 
of scenes by learning a continuous volumetric representation of the scene’s 
geometry and appearance directly from 2D images. 

Variational Autoencoder AVariational Autoencoder (VAE) is a type of generative 
model and a variant of the autoencoder neural network architecture. VAEs 
are designed for unsupervised learning and are capable of learning a latent 
representation of input data while simultaneously generating new data samples. 
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