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Abstract—In response to the escalating cyber-attacks in the
modern IT and IoT landscape, we developed CYGENT, a con-
versational agent framework powered by GPT-3.5 turbo model,
designed to aid system administrators in ensuring optimal perfor-
mance and uninterrupted resource availability. This study focuses
on fine-tuning GPT-3 models for cybersecurity tasks, including
conversational AI and generative AI tailored specifically for
cybersecurity operations. CYGENT assists users by providing
cybersecurity information, analyzing and summarizing uploaded
log files, detecting specific events, and delivering essential in-
structions. The conversational agent was developed based on the
GPT-3.5 turbo model. We fine-tuned and validated summarizer
models (GPT3) using manually generated data points. Using this
approach, we achieved a BERTscore of over 97%, indicating
GPT-3’s enhanced capability in summarizing log files into human-
readable formats and providing necessary information to users.
Furthermore, we conducted a comparative analysis of GPT-3
models with other Large Language Models (LLMs), including
CodeT5-small, CodeT5-base, and CodeT5-base-multi-sum, with
the objective of analyzing log analysis techniques. Our analysis
consistently demonstrated that Davinci (GPT-3) model outper-
formed all other LLMs, showcasing higher performance. These
findings are crucial for improving human comprehension of logs,
particularly in light of the increasing numbers of IoT devices.
Additionally, our research suggests that the CodeT5-base-multi-
sum model exhibits comparable performance to Davinci to some
extent in summarizing logs, indicating its potential as an offline
model for this task.

Index Terms—AI chatbot, Cybersecurity, GPT-3, CodeT5,
Conversational AI, Generative AI, Log summarizing.

I. INTRODUCTION

The emergence of Large Language Models (LLMs), such as
GPT (Generative Pre-trained Transformer), has revolutionized
AI applications, enabling advancements in text generation,
classification, and chatbot functionalities. These innovations
have transformed user interfaces (UI) and user experiences
(UX), introducing Conversational UIs, Context-aware Assis-
tance, and Personalized UX.

In the cybersecurity domain, leveraging LLMs presents
opportunities to enhance threat detection, threat mitigation,
and overall security posture. This paper introduces a frame-
work that integrates GPT with conversational user interfaces,
facilitating interactions between security analysts and systems.
Additionally, the framework incorporates text generation to
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produce user-friendly summaries of log files. By automating
tasks such as log file analysis and summarization, the frame-
work aims to improve efficiency and reduce manual effort in
handling large volumes of log data.

The primary contributions of this article can be summarized
as follows: We introduces a novel framework for a conversa-
tional agent powered by GPT models, with the specific goal
of effectively assisting security analysts and enhancing the
process of log analysis. This framework explores the fine-
tuning of GPT-3 models to generate human-readable sum-
maries from complex log data, thereby improving human
comprehension of logs, particularly in the context of the
increasing number of IoT devices. Additionally, the study
includes a comparative assessment to determine whether GPT-
3 models excel beyond other prominent LLMs in the task of
summarizing log data. Furthermore, the research demonstrates
the efficient implementation of the framework, showcasing its
ability to transform complex log data into concise summaries
and offer valuable support to security analysts.

II. RELATED WORK

This section provides a concise overview of recent advance-
ments in chatbot technologies and log analysis techniques
within cybersecurity, highlighting their evolution and current
limitations.

SecBot [6] is an AI-powered tool that extracts information
from conversations, identifies cyberattacks, and offers tailored
solutions based on intent classification and entity extraction
techniques using NLP and neural networks. It has been
evaluated with Rasa 2.0. Similarly, [3] developed a chatbot
interface for network security software applications, utilizing
named entity recognition (NER) and intent classification to
understand user intentions and perform network security tasks
automatically, although restricted by predefined vocabulary
and requiring regular updates.The paper [5] addressed cyber
security risk analysis for Government-to-Citizen (G2C) e-
services, focusing on virtual assistants and utilizing the Factor
Analysis of Information Risk (FAIR) model for quantitative
risk assessment. Their approach involves gathering insights
from cybersecurity professionals, and they determine the
semantic similarity between cybersecurity terms and threat
vectors obtained from expert interviews. However, the method
is constrained by predefined vectors stored in the database.

ar
X

iv
:2

40
3.

17
16

0v
1 

 [
cs

.C
R

] 
 2

5 
M

ar
 2

02
4



The paper [11] describes the implementation of a bot sys-
tem connecting Facebook Messenger with IoT devices in a
highly secure architecture, aiming to provide developers with
a simple, secure, and fast framework for easily integrating the
two platforms. One of the latest paper, [8] introduces ChatIoT,
which utilizes Large Language Models (LLMs) to process
natural language in chat interactions. It focuses on enabling
the zero-code generation of Trigger-Action Programs (TAPs),
a type of Internet of Things (IoT) application commonly used
in smart homes for managing existing devices.

The paper [10] presented LogAssist, a novel log summariza-
tion approach aiding practitioners in log analysis by organizing
logs into event sequences (workflows) and employing n-gram
modeling to compress log events. LogAssist reduces log events
requiring investigation by up to 99% and shortens log analysis
time by 40%, according to a user study with 19 participants.
While positively received, LogAssist’s reliance on predefined
hyperparameters suggests avenues for future refinement and
adaptation to enhance log analysis practices. In [13] proposed
an approach for log file analysis involving schema analysis
and RDF (Resource Description Framework) content sharing,
achieved through log content normalization using regular ex-
pressions and dictionary-based classifiers. However, the output
lacks human readability and may require decoding, and the
method’s reliance on semantic similarity overlooks contextual
information, limiting its effectiveness. The study [15] proposed
log file reduction using the Naive Bayes algorithm, highlight-
ing its effectiveness in feature extraction, although demanding
rigorous feature engineering.In paper GPT-2C[17], they en-
hances Intrusion Detection Systems by fine-tuning the GPT-2
model to parse dynamic logs with malicious Unix commands
from a Cowrie honeypot, achieving 89% accuracy.Similarly,
[9] explored feature extraction and transformation using N-
gram techniques and TF-IDF, coupled with K-means clustering
adaptations, achieving a notable maximum F-score of 0.943.
However, both approaches necessitate substantial manual in-
tervention due to intensive feature engineering, leading to in-
creased implementation time. As part of feature development,
in our previous paper [1] we developed an anomaly detection
feature for the CYGENT framework which uses fine tuned
GPT3 models for detection of anomalies in the log data.

Our review highlights a gap in leveraging Large Language
Models (LLMs) within conversational agents and log file
analysis and summarization, despite their extensive use in
cybersecurity challenges like Intrusion Detection Systems,
Honeypot Log analysis and Distributed Denial of Service
(DDoS). Expanding LLM applications in these areas presents
an opportunity to achieve SOTA performance. This study aims
to explore and exploit these possibilities for further research
advancement.

III. METHODOLOGY

A. Chatbot- Conversational Agent

To evaluate conversational systems across varied com-
municative scenarios in the cybersecurity domain, we de-
signed a chatbot, utilizing SOTA algorithms for language

comprehension, including the GPT-3.5 [14] turbo model, that
can handle colloquial dialogues and complex cybersecurity
inquiries, offering humanlike responses. The user interface
enables intuitive interactions, allowing users to inquire, express
opinions, and engage in extended dialogues seamlessly. This
innovation marks a new era in conversational AI, particularly
applicable in cybersecurity, facilitating evaluation across di-
verse communicative scenarios.

Utilizing GPT-3.5 turbo, we developed a user-friendly in-
terface enabling users to upload log files, especially during
incident investigations, and engage in Q&A sessions with
the chatbot for log analysis. The GPT-3.5 turbo processes
user inquiries via an API, providing responses regarding data
protection, cybersecurity threats, and related details. With
a conversation history limit of 4096 tokens, equivalent to
approximately 3000 words, the chatbot’s short-term memory
can manage ongoing interactions, and users can request log file
summarization within the chat window. Figure 1 illustrates the
conversational flow and interaction between the user agent and
the chatbot.

Fig. 1. Chatbot architecture.

B. Log Summarizer

Logs containing massive amounts of information can be
computationally challenging. The chatbot’s log summarization
feature, leveraging GPT-3’s language capabilities, is crucial
for extracting essential insights from large log datasets, aiding
in system behaviour analysis, health monitoring, and issue
troubleshooting. Users can upload log files via the user in-
terface, initiating summarization through an API call to GPT-
3 models. The resulting human-readable summary facilitates
comprehension of complex log data in a user-friendly manner.
The system employs a multi-layered approach, combining
data-driven and rule-based techniques, to enhance efficiency
in summarization. Utilizing MongoDB, a NoSQL database
known for flexibility and scalability, the framework stores
generated summaries and file contents in a document-oriented
manner. This architecture is depicted in Figure 2, showcasing
the flow of data.

First, our summarizer streamlines conversations by simplify-
ing them to their core points, scanning each log line to create a
coherent summary that links contextual information. Addition-
ally, our rule-based logic guarantees comprehensive coverage
of conversation context by extracting specific events with
errors, warnings, exceptions, and other information like event
Types, IP addresses, HTTP Status codes, URLs, file paths if
any, etc. By combining data-driven summarization with rule-
based reasoning, our system produces thorough and refined



responses. The training step involves creating a dataset derived

Fig. 2. Summarization architecture.

from a rule-based logic framework, and we have manually
modified some of the data points to create the desired re-
sponses. We explored sampled data available from multiple
resources [4, 7] and generated some synthetic using the code
provided in [12]. We used regular expressions to construct
summaries required for the training dataset that encapsulate
similar patterns and important information frequently present
in the logs. Once the dataset is created, the model proceeds
with training. We used 101 data points for fine-tuning Ada,
Babbage, Curie and Davinci models available for GPT-3 from
OpenAI. As described in [16], vanilla versions of these models
can be fine-tuned with sizes: Ada 2.7B, Babbage 6.7B, Curie
13B, Davinci 175B. We have used 81 data points for the
training cycle and 21 data points for the validation cycle. The
created validation file had the same format as the training file,
and they were mutually exclusive. Evaluation metrics were
calculated against validation data at periodic intervals during
training.

As part of our comparative analysis, we examined the per-
formance of GPT3 models in comparison to various encoder-
decoder CodeT5 models, as detailed in [18]. CodeT5 models
are characterized by an encoder-decoder framework, sharing
the same architecture as T5, whereas GPT3 models feature a
decoder architecture. CodeT5 models demonstrate proficiency
in tasks such as code generation, code translation, code defect
detection, and code summarization. Since log information
follows a syntax comprising alphanumeric characters and
natural language, it can be considered as code, justifying the
use of CodeT5 models for log data summarization. We fine-
tuned three different versions of CodeT5: small(60M), base
(220M), and base-multi-sum.

C. History tab and feedback data collection

This module displays the existing details generated and
identified for an already uploaded file for a particular session.
The user can also trigger data generation if it was not previ-
ously generated. It also has the feature to regenerate the results
again for each file and corresponding tasks. Another important
feature is to collect data or feedback from users and save it
in a database, which can be further utilized for retraining
the model. This helps to refine the existing models with
annotated data without manual intervention from the user. The

framework is constructed entirely in Python, encompassing
both the user interface and back-end functionalities. Key tech-
nical components include Gradio (3.36.1) and gradio-client
(0.2.9), open-source Python libraries facilitating the develop-
ment of user interfaces and widely used for deploying machine
learning models. Gradio is easily customizable and integrates
seamlessly with popular Python libraries such as Scikit-learn,
PyTorch, NumPy, seaborn, pandas, and TensorFlow. OpenAI
(0.27.8) is utilized for accessing the API provided by Ope-
nAI, enabling fine-tuning and interaction with GPT-3 Large
Language Models. We use Pymongo (4.4.1) to store data
from uploaded log files and model-generated summaries. This
allows us to reproduce responses and maintain a history of
files and corresponding data for the session.

Fig. 3. History data flow architecture.

D. Evaluation metrics

OpenAI metrics: To evaluate the GPT3 fine-tuned models,
we utilized Weights and Biases (WandB) platform [2]. As
the summarization task is generative, key metrics such as
training loss, training token accuracy, validation loss, and
validation token accuracy were employed. The evaluation
parameters included elapsed tokens and elapsed examples,
denoting the total number of tokens and examples seen by the
model, respectively. Additionally, metrics like training loss,
training sequence accuracy, training token accuracy,
validation loss, validation sequence accuracy, and
validation token accuracy were utilized to assess model
performance during training and validation phases for GPT3.

Other metrics: Two other metrics are employed to evaluate
the quality of manually generated summaries. Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) assesses the
word overlap between the generated output and the refer-
ence text, with various versions targeting different lengths of
word or n-gram overlap. Specifically, ROUGE-L measures the
longest common subsequence between the two texts. ROUGE-
N computes the ratio of overlapping n-grams to the total
number of n-grams in the reference text. Also, the BERTScore
[19] computes embeddings for words or subwords in both texts
and then measures similarity. This approach provides a more
nuanced comparison beyond exact word or sequence matches.

IV. IMPLEMENTATION AND RESULTS

A. Chatbot UI

The chatbot UI features two main tabs: one for uploading
log files, one for summarization and one for displaying chat
logs. Another is where users can review previous uploads and



their summaries. Chat logs are limited to 4096 tokens (around
3000 words). Refer to Figure 4 for a snapshot of the chat log
tab, listing its capabilities to the user.

Fig. 4. Chatbot User Interface.

B. Summarizer

The results were collected and visualized using plots in
WandB for GPT3 models. Analysis was done for details of
the token and example counts observed by each model at two
key stages, 41 (middle step) and 81 (final step), in midway
and at conclusion of training/validation.

WandB evaluation: During the training cycle, Ada exhib-
ited improvement, with training loss decreasing from around
0.137 to 0.0958, indicating closer alignment between model
predictions and actual values. Training sequence accuracy and
token accuracy also increased, suggesting enhanced capture
of complex patterns in the training data. In the validation
cycle, there was a decline in validation sequence accuracy,
although validation token accuracy notably increased. Babbage
showed improvement in the training cycle, with training loss
decreasing from approximately 0.165 to 0.124. However, there
was a slight decrease in token accuracy from 92.22% at Step
41 to 91.58% at Step 81. In the validation phase, there was a
noticeable decline in validation sequence accuracy, along with
a decrease in validation token accuracy. Curie demonstrated
improved convergence during the training cycle, with stable
training sequence accuracy and a slight increase in token
accuracy. However, validation token accuracy exhibited a
decline, while validation sequence accuracy improved between
steps. Davinci showed impressive progress during the training
cycle, with significant decreases in training loss and increases
in training sequence accuracy and token accuracy. However,
there was a decline in the accuracy of validation tokens and
sequences.

Manual evaluation for comparative analysis and model
selection: Our manual evaluation involved generating sum-
maries for five data points using all fine-tuned models. Subse-
quently, we assessed these summaries using evaluation metrics
ROUGE-N, ROUGE-L, and BERTScore. The results are de-
tailed in Tables I, II, III, and IV.

Analyzing the ROUGE-1 (F-Score) presented in Table I,
Davinci consistently achieves high scores, while Ada trails
behind the other models. CodeT5-base-multi-sum performs
better than all GPT3 models (Ada, Curie, and Babbage)

other than Davinci, which shows that CodeT5 models are a
good choice for the log summarization task. Regarding the
ROUGE-2 (F-Score) in Table II, Davinci and CodeT5-base-
multi-sum appear to perform relatively well across multiple
prompts. If considering the average, CodeT5-base-multi-sum
sometimes outperforms Davinci in certain instances. Davinci
and CodeT5-base-multi-sum appear to perform relatively well
across multiple prompts based on the ROUGE-L F-scores
shown in Table III. Lastly, examining the BERTScore (F-
Score) outlined in Table IV for all prompts, Davinci con-
sistently achieves the highest BERTScore F-scores among all
models, indicating that it has the highest token-level similarity
with the reference summaries. The performance of other mod-
els varies across prompts, but generally, CodeT5-base-multi-
sum and Curie also achieve high BERTScore F-scores across
prompts. Ada, although still performing reasonably well, tends
to have slightly lower BERTScore F-scores compared to other
models, especially Davinci. Overall, the analysis suggests that
Davinci and CodeT5-base-multi-sum perform well and are
eligible options for the final implementation.

Fig. 5. Rogue score for summaries generated by GPT3 models.

Fig. 6. Rogue score for summaries generated by CodeT5 models.

Figures 5 and 6 present graphs depicting the executed steps
on the X-axis and the corresponding ROUGE scores on the Y-
axis. The Davinci model scored higher consistently, while the
Ada model scored lower compared to other models at different



TABLE I
ROUGE-1-1(F-SCORE) FOR SUMMARIES

Prompt number Ada Curie Babbage Davinci CodeT5-small CodeT5-base-multi-sum CodeT5-base

Prompt-1 0.088888 0.271604 0.261904 0.532258 0.394366 0.459770 0.531645
Prompt-2 0.654205 0.769230 0.579999 0.819999 0.472222 0.824742 0.589743
Prompt-3 0.548387 0.564705 0.492537 0.743362 0.568181 0.695652 0.260869
Prompt-4 0.366412 0.656488 0.715447 0.560747 0.320987 0.660194 0.703703
Prompt-5 0.491803 0.606896 0.725663 0.749999 0.337662 0.646464 0.543478

TABLE II
ROUGE-2(F-SCORE) FOR SUMMARIES

Prompt number Ada Curie Babbage Davinci CodeT5-small CodeT5-base-multi-sum CodeT5-base

Prompt-1 0.037037 0.10638 0.040404 0.329113 0.305882 0.245283 0.442105
Prompt-2 0.439716 0.46774 0.351999 0.617886 0.390804 0.756302 0.473118
Prompt-3 0.321428 0.31372 0.317647 0.633802 0.440366 0.563636 0.162790
Prompt-4 0.226415 0.39751 0.533333 0.377952 0.288659 0.495867 0.499999
Prompt-5 0.298850 0.39999 0.510344 0.538922 0.274509 0.453124 0.327586

TABLE III
ROGUE-L(F-SCORE) FOR SUMMARIES

Prompt number Ada Curie Babbage Davinci CodeT5-small CodeT5-base-multi-sum CodeT5-base

Prompt-1 0.088888 0.246913 0.238095 0.516129 0.338028 0.436781 0.531645
Prompt-2 0.598130 0.749999 0.559999 0.819999 0.472222 0.824742 0.589743
Prompt-3 0.516129 0.564705 0.477611 0.725663 0.568181 0.695652 0.260869
Prompt-4 0.366412 0.656488 0.682926 0.560747 0.320987 0.660194 0.703703
Prompt-5 0.475409 0.593103 0.725663 0.749999 0.337662 0.646464 0.543478

TABLE IV
BERTSCORE(F-SCORE) FOR SUMMARIES

Prompt number Ada Curie Babbage Davinci CodeT5-small CodeT5-base-multi-sum CodeT5-base

Prompt-1 0.806917 0.865538 0.880915 0.932380 0.898788 0.881425 0.881425
Prompt-2 0.942412 0.963497 0.935355 0.958671 0.917082 0.966063 0.966063
Prompt-3 0.931022 0.915863 0.925954 0.969649 0.920796 0.945890 0.945890
Prompt-4 0.916147 0.937956 0.958410 0.909761 0.883313 0.939660 0.939660
Prompt-5 0.898010 0.942987 0.939919 0.950636 0.848164 0.927545 0.927545

steps. The CodeT5-base-multi-sum model outperforms Ada
and Curie models and moderately outperforms Babbage in
most instances. Through our detailed manual evaluation, it
was evident that both the Davinci and CodeT5-base-multi-sum
models consistently outperformed all other models. Conse-
quently, we integrated the Davinci model as the summarization
module within the CYGENT conversation agent framework.
An illustration of the model generated user response via the
chatbot, after uploading a log file for summary generation, is
depicted in Figure 7. The chatbot offers two distinct response
types: one originating from the model and another produced
by a rule-based algorithm designed to extract salient details
from the uploaded log file. Figure 8 below showcases a sample
response generated by the rule-based algorithm.

C. History Tab
Figure 9 shows that the users can browse through previously

generated summaries in the history tab and modify them for
feedback and future reference. This data is stored and utilized
for re-training the algorithm to enhance its performance. The

Fig. 7. Summary response via chatbot-generated by model

Fig. 8. Summary response via chatbot-generated using rule-based algorithm



systematic process for gathering feedback involves querying
the summary, making necessary modifications, and saving
changes using the ”save-changes” button. Upon successful
submission, an acknowledgement response is shown.

Fig. 9. User modifying summary data for changes

V. DISCUSSION AND FUTURE WORK

Previous works in cybersecurity chatbots have primarily
relied on natural language processing techniques such as
entity recognition and intent classification [6, 3]. However,
these approaches often depend on predefined keywords or
are limited to specific platforms, hindering their widespread
adoption [11, 5]. In contrast, our methodology leverages Large
Language Models (LLMs) like the GPT-3.5 turbo model to
achieve superior contextual understanding and platform ag-
nosticism, enabling integration across diverse platforms [14].
Our approach utilizes advanced GPT-3 LLM models to bypass
time-consuming processes and produce human-readable sum-
maries, even for non-technical users [2]. While our fine-tuned
models demonstrate progress during training, inconsistencies
in validation phases suggest challenges in data generalization.
Based on comparative analysis we have found that GPT3
models outperforms other LLMs in the task of summarizing
log data. Another significant find is that CodeT5-base-multi-
sum show cased a similar performance as GPT3 Davinci
model, indicating its eligibility to use as an offline model for
the task.

Our future vision involves expanding and refining our
framework to become an essential tool for maintaining secure
networks with minimal human intervention. One crucial di-
rection is the integration with Host-based and Network-Based
Intrusion Detection Systems (HIDS/NIDS) for continuously
monitoring system log files. We aim to transition from manual
file uploads to real-time monitoring, enabling seamless produc-
tion of human-readable summaries as fresh data is recorded,
ensuring timely responses to threats or anomalies. Regarding
evaluation, We will gather feedback from cybersecurity experts
through a survey-based assessment to improve our conversa-
tional agent framework for real-world scenarios.
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