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ABSTRACT
The rise of Large Language Models (LLMs) has revolutionized our
comprehension of intelligence bringing us closer to Artificial Intel-
ligence. Since their introduction, researchers have actively explored
the applications of LLMs across diverse fields, significantly elevating
capabilities. Cybersecurity, traditionally resistant to data-driven solu-
tions and slow to embrace machine learning, stands out as a domain.
This study examines the existing literature, providing a thorough
characterization of both defensive and adversarial applications of
LLMs within the realm of cybersecurity. Our review not only surveys
and categorizes the current landscape but also identifies critical re-
search gaps. By evaluating both offensive and defensive applications,
we aim to provide a holistic understanding of the potential risks and
opportunities associated with LLM-driven cybersecurity.

KEYWORDS
LLM, Large Language Model, AI, cybersecurity, advanced threats,
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1 INTRODUCTION
The evolution of generative artificial intelligence, notably large
language models (LLMs), has influenced most disciplines of science
and technology that support content generation in diverse applica-
tions [60]. In education, LLMs support educators in various tasks
such as assignment assessment [36], question generation [22], pro-
viding feedback [30], and essay grading [92]. In the entertainment
industry, LLMs demonstrate competitive performance in generating
music captions [19] as well as video game scripts [51]. Automation
is introduced into customer service [63], marketing [27, 94], and
supply chain management [34, 47, 52] through the integration of
LLMs in business. Meanwhile, the utilization of LLMs in healthcare
enables professionals by providing real-time clinical decision sup-
port [24, 69], medical education [50, 81], and prediction of disease
progression [70, 78].

With advancements in cyber threats, the cybersecurity domain
can also be equipped with cutting-edge tools, assisting cybersecu-
rity practitioners who continuously seek solutions to implement
advanced policies or strengthen technological protections against
the disclosure of confidential information, unauthorized access, and
other forms of data modification [43]. Thanks to LLMs’ capability in

breaking down complex natural language patterns, security experts
are now enabled to explore more attack vectors in various contexts
associated with textual data [93].

Functionalities of LLMs are increasingly being integrated into
the cybersecurity posture, contributing to promising enhancements
in cybersecurity defense applications [53]. Through analyzing vast
amounts of text data, including security logs, these models can
identify emerging vulnerabilities. Anomaly detection represents
a key application of LLMs for identifying potential threats [55].
Furthermore, LLMs mitigate potential risks by offering automated
vulnerability fixes, aiming to improve organizations’ security pos-
ture [64].

However, with the continuous advancements of LLMs in cyber
defense, it is crucial to acknowledge that these language models
can also be leveraged by malicious actors. For example, LLMs can
be misused by attackers to execute malware in target companies
[8], engage in defense evasion [12], and gain access to credentials
[68]. The potential to generate complex and personalized phishing
messages further highlights the misuse of LLMs for deceiving peo-
ple in an organization, paving the way for unauthorized access to
companies’ sensitive information [72]. To further elaborate, Wor-
mGPT [23] is an AI-powered tool designed for cybercriminals to
automate the generation of personalized phishing emails. Although
it may sound somewhat similar to ChatGPT, WormGPT is not a
friendly neighborhood AI; instead, its purpose is to produce ma-
licious content. Furthermore, FraudGPT [21] enabled attacker to
create content to convince users to click on a particular generated
link.

The dual nature of LLMs has transformed the cybersecurity realm
by offering new challenges and opportunities. Developing robust
defensive strategies to foresee attacks and address concerns related
to the utilization of LLMs motivated us to formulate a taxonomy
of strategies appearing in the field of cybersecurity. To define our
contributions more precisely, this paper addresses:

• The intersection of LLMs’ offensive approaches as a newly
introduced dimension to cybersecurity is framed in this
study in line with the Mitre attack framework [14].

• Exploring LLM-empowered defensive strategies in deal-
ing with potential threats and malware based on the NIST
cybersecurity framework [15].
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• Understanding the major functionalities of LLMs in cur-
rent research trends alongside potential applications in the
cybersecurity landscape.

The rest of paper is organized as follows: In Section 2, we provide
an overview of LLMs . Moving forward to Section 3, we explore
cyber threat defenses leveregred by LLMs where Section 4 outlines
sophisticated attacks designed by LLMs. Finally, Section 5 concludes
the challenges posed by LLMs in the context of cybersecurity.

2 BACKGROUND
LLMs are neural networks that learn from textual data to process
various language-related tasks [59]. From Eliza as a pattern recogni-
tion chatbot in the 1960s [89], over the years several advancements
pushed Natural Language Processing (NLP) forward, such as long
short-term memories to handle a wide range of data [35], Stanford
CoreNLP suite [56] providing a collection of algorithms to perform
intricate NLP tasks and continued with transformer architecture
[86].

A breakthrough in Transformer-based models surged the field
of NLP and led to the development of numerous kinds of effec-
tive LLMs. T5 [66] applied language modeling in pre-trained LLMs,
where spans are altered with a single mask. GPT-3 enhanced the
performance of LLMs with size by increasing model parameters
to 175B. PaLM-2 is trained on high-quality datasets [5] with an
objective of cutting the cost of training and inference [59]. Llama,
a set of decoder-only models aimed at minimizing the amount of
activations in the backward step [59, 84]. Xuan Yuan 2.0, a Chi-
nese financial chat model [59, 97], AlexaTM [80], PaLM-2 [5], as
well as GLM-130B [96] are a few instances of general purpose
pre-trained LLMs. While pre-trained models offer an essential un-
derstanding of languages, as AI advances, fine-tuning LLMs boost
business functions and satisfaction by fulfilling industry-specific
criteria [99]. A general-purpose LLaMA-GPT-4 [65], Goat [54] for
handling complicated arithmetic queries, HuaTuo [88] a medical
knowledge model, Evol-Instruct [91] offering complicated prompts,
and LLaMA 2-Chat fine-tuned using rejection sampling [84] are
exemplary instruction-tuning LLMs. Running in higher costs, ex-
tensive hardware requirements, cost of slow training on various
tasks, limited LLMs utilization [59]. Retrieving support evidence
from an external in-domain knowledge base [98], parameter tuning
and knowledge distillation are among the techniques extensively
researched for effective LLM deployment [59].

Recently, the scientific literature has experienced a significant
growth in the number of articles related to LLMs, principally driven
by their proven efficacy across a wide range of functions. As a result,
throughout various surveys, researchers attempted to categorize
these advancements in LLM architecture [37, 59, 100, 101]. Though
previous studies have investigated literature reviews to highlight
the safety aspects of LLMs [1, 38, 39, 49], the present study focuses
primarily on the application of LLMs in the context of cyberdefense
as well as cyberattack.

3 DEFENSIVE APPLICATIONS OF LLMS
In the field of cybersecurity, the National Institute of Standards
and Technology (NIST) provides a comprehensive structure to en-
hance organizations’ cybersecurity status, as detailed in the NIST

cybersecurity framework [15]. According to its effectiveness and
popularity in cyberdefense, we classify the diverse array of LLM-
centered approaches that contributed in cyberdefense through the
lens of NIST framework to better understand the impact of LLMs in
cyberdefense. The framework consists of a structured approach to
identify, protect, detect, respond to, and recover from cybersecurity
threats and incidents.

3.1 Identify
The process of developing an organizational understanding to man-
age cybersecurity risk concerning systems, assets, data, and capa-
bilities is referred to the Identify function in the context of the NIST
framework [15]. Identifying potential risks is a crucial phase in
risk management, and LLMs aim to fulfill a transformational role
in forming risk management in businesses. Johnson [41] presents
invaluable insights for policymakers on the applicability of LLMs
to risk management. According to the author, LLMs go through
business headlines, social media posts, economic indicators, legal
documentation, and other key sources, emphasizing risk elements
to deliver more accurate and predictive risk assessments that a
human analyst might overlook. Lima et al. [17] develop a risk ma-
trix from application reviews using LLMs. Through user feedback,
they proposed an automatic prompt extraction technique. These
prompts were passed into LLMs, which classified the risks into five
classes ranging from negligible to critical for further investigation.
Naleszkiewicz [58] discusses LLM applications allowing companies
to overcome traditional enterprise risk management challenges,
such as operational and compliance risks. LLMs evaluate unstruc-
tured siloed data across various departments, acting as a bridge to
provide an in-depth understanding of an organization’s risk pro-
file. Furthermore, LLMs boost risk modeling by generating expert
opinions based on prior patterns, risk mitigation by generating
contingency plans, and risk reporting by providing customized risk
assessments.

3.2 Protect
Implementing safeguards to guarantee the delivery of essential
services is reflected in protect function [15]. It involves various
mechanisms such as maintaining a proactive security posture or
prioritizing cybersecurity awareness and training to empower the
organization’s workforce. In the current digital environment, proac-
tive protection technologies are essential since they enable com-
panies to anticipate and prevent troubles before they arise. For
example, proactive technologies empower enterprises to minimize
the likelihood of coming across inappropriate content, and thus
reduce the possibility of experiencing ethical or legal challenges
[82]. Voros et al. [87] harnessed the power of LLMs to enhance web
content filtration. They have improved the accuracy of web con-
tent categorization by scanning of large amount of URLs. Another
research accomplished by Yu et al. [95] investigates GPT-3’s capac-
ity to produce honeywords to trap the attackers if they are using
deceptive generated passwords. First, they extract the components
of the original password using a password-specific segmentation
algorithm. These segments are then fed into GPT-3 as a prompt to
generate a collection of passwords similar to the input password.
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A crucial element in this model’s efficacy is the maintenance of
strong password components called chunks given to the LLM [76].

LLMs can play a valuable role in strengthening cybersecurity
awareness and training within the protect function of the NIST
framework. Tann et al. [83] apply LLMs to tackle professional certi-
fication topics and performCapture The Flag (CTF) tasks to improve
participants’ cybersecurity education. LLMs have significance by
enabling attendees to explore CTF test settings, providing expla-
nations to concerns connected to professional certification, and
highlighting the need to model cybersecurity breach scenarios in
CTF sessions to support the development of more comprehensive
skills. However, LLMs face limitations when it comes to responding
to conceptual queries. Furthermore, LLMs can improve team col-
laboration by offering security question solutions that are suitable
for inexperienced as well as experts. For instance, LLMs greatly
increase the efficacy of penetration test teams by making it easier
for teammembers to pass on information by offering more in-depth
assessments and generating appropriate explanations to be on the
same page about the detected risks. Moreover, LLMs serve as a
connection between experts and publicly accessible web resources,
in particular assisting specialists in remaining up to date on the
most recent security concerns that are critical to their company
[20].

Automated vulnerability fixing with LLMs diminishes the risk of
cyberattacks. A three-step process is described by Charalambous
et al. [10] for addressing automotive vulnerability issues. Bounded
Model Checking (BMC) is the first step in the process. It evaluates
the user-provided source code to a property specification. The orig-
inal code and the appropriate counterexample are provided to the
LLM module by the BMC engine in the scenario that this phase’s
verification is unsuccessful and a security property violation is de-
tected. Secondly, customized queries are sent to the LLM engine to
produce a corrected version of the code. Lastly, the BMC module
re-evaluates the code that the LLM module changed to formally de-
termine whether the updated version matches the original security
and safety requirements.

Automating flaw mitigation can be facilitated by LLMs if the
defect is well-defined and the prompt provides additional informa-
tion. While these models were fully effective in fixing simulated
vulnerabilities, real-world scenarios presented challenges for their
performance. The primary challenges stem from the numerous
methods that information is presented, the complexities of prompt
processing and code development in LLMs, and the significance
of prompt phrasing, which can result in notable variations in the
code required to be generated [64]. Furthermore, Sandoval et al.
[75] performed an examination of potentially insecure code sugges-
tions during the process of code development. Within a particular
programming context that the authors had defined, they tested
scenarios with and without AI support. Their findings indicate that
users assisted by AI develop security flaws at a rate lower than
ten percent, suggesting that using LLMs in their security-oriented
research does not present major new security risks.

3.3 Detect
The NIST framework’s Detect function serves to identify cyber-
security events as they arise [15]. Exploring anomaly detection

in system logs is a crucial step toward developing effective detec-
tion methods through the use of LLMs. Recurrent Neural Network
Language Models are used by Tuor et al. [85] to present an unsuper-
vised, online anomaly detection method for computer security log
analysis. This approach simplifies the usual effort-intensive feature
engineering stage, making it fast to implement, and is independent
of the tools used for system configuration and monitoring. The
authors have demonstrated the efficacy of their approach by uti-
lizing the Los Alamos National Laboratory Cyber Security Dataset
[44]. Their findings indicate that the approach can be handled in
real-time, generating and organizing log-line-level anomaly scores
while taking into account inter-log-line context. The authors [85]
considered metrics including Average Percentile (AP) and Area
under the Receiver Operator Characteristic Curve (AUC) to show
how the false-positive rate dropped without significantly affecting
the ability to detect unusual behavior [44].

GPT-2 is used by VulDetect[61], a transformer-based vulner-
ability detection framework, to detect anomalies in system logs.
Using a dataset containing both vulnerable and non-vulnerable
code, the model is fine-tuned to detect anomalies that represent
regular behavior. Malicious behavior is defined as any unexpected
or unlikely outcome that the model possibly generated. Two bench-
mark datasets, SARD [102] and SeVC [77], were utilized by the
authors to assess VulDetect’s performance. The outcomes showed
that VulDetect has a low false positive rate and is efficient in real-
time vulnerability detection. Moreover, the integration of LLMs
into penetration testing practices has the potential to revolutionize
the world of threat detection. Threat detection could undergo a
revolution if LLMs are incorporated into penetration testing pro-
cedures. Happe et al.’s investigation [31] focused on using LLMs
to improve penetration testing. In line with their classification,
LLMs provide advancement in two aspects of penetration testing:
high-level and low-level operations. High-level assignments include
conceptual investigation and strategic planning, such as finding
out about emerging active directory attacks. On the other hand,
tasks at a lower level incorporate consideration of practical activi-
ties involving system exploitation and vulnerability analysis. This
entails looking for specific attack vectors for a particular system.

A further investigation by Deng et al. [18] introduces PENTEST-
GPT, an automated penetration testing system driven by LLMs.
Complex tasks such as question answering, summarization, and
reasoning are readily handled with PENTESTGPT. Addressing con-
text loss concerns and simulating human behavior in penetration
testing are the objectives. Three self-interacting modules jointly
form PENTESTGPT including reasoning, generation, and parsing.
These modules collaborate to tackle penetration testing problems
by using a divide-and-conquer approach. Specific subtasks are al-
located to each module, which interact to effectively handle and
compile the data generated during testing.

Ranade et al. [67] improve the processing of threats, attacks, and
vulnerabilities which is challenging due to the high volume of data,
and the dynamic nature of evolving attack techniques. The primary
objective of their research is an enhanced version of a BERT model,
which aims to effectively perform several cybersecurity-related op-
erations. Using Masked Language Modeling (MLM), the model was
trained using unstructured and semi-structured open-source Cyber
Threat Intelligence (CTI) data. Its evaluation encompassed diverse
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downstream tasks with potential applications in Security Opera-
tions Centers (SOCs). They additionally offer real-world examples
of how to apply CyBERT to cybersecurity problems. Several subse-
quent works have furthered the advancements of this research in
terms of both training efficiency and accuracy such as SecureBERT
[2], CySecBERT [6], and ClaimsBERT [4]. In this regard, Bayer et
al. [6] presented a word embedding model based on BERT and col-
lected a dataset from multiple sources. This adaptation makes the
model capable of coping with a wide range of cybersecurity tasks,
namely malware detection, alert aggregation, and phishing website
detection.

The LLMs can also facilitate auditory tasks to detect vulnera-
bilities among the smart contracts. David et al. [16] utilized LLMs
to target vulnerabilities in the smart contracts and DeFi protocol
layers. Their study detects 52 compromised DeFi protocols, as input
data for the language model context, evaluating the impact of model
temperature and context length on the language model’s efficacy
in smart contract auditing. The results indicated that incorporating
LLMs into the audit workflow substantially boost the effectiveness
and accuracy of analyzing an array of feasible attacks. On the other
hand, Chen et al. [13] trained LLM on a dataset of 10,000 smart
contracts and evaluated how well it detected nine different vulnera-
bilities. According to the authors’ findings, LLMs frequently deliver
false positive results when detecting smart contract vulnerabilities.
This might be connected with interference from incomplete codes
or LLMs’ incapacity to understand code segments.

An LLM can be used to build a scenario comparable to an at-
tacker’s strategy for gaining access to an organization’s property
by exploiting a vulnerability. Garvey et al. [29] study the viability
of using Generative-AI to improve the development of Red Team
scenarios in organizations. The authors [29] propose employing
LLMs to construct narratives based on prompts or questions as
input. Subsequently, subject-matter specialists provide remarks, in-
cluding modifying narratives, adding new elements, or integrating
multiple items to develop more complex scenarios. The objective is
to guarantee that the generated scenarios are plausible and adhere
to the provided framework. They found that including elements
inspired by fiction into LLMs improves creativity and imagination
in the scenario development process.

Koide et al. [46] present a strategy for detecting phishing web-
sites using LLMs. Their approach entails using a web crawler to
retrieve data from websites and creating prompts for LLMs. Social
engineering strategies are then identified by evaluating the context
of entire web pages and URLs. The prompts rely on the Chain of
Thought (CoT) prompting technique, which enables LLMs to elab-
orate on their reasoning. In addition, the study recommends an
HTML simplification approach to improve efficiency. This entails
lowering the token count by simplifying HTML text and removing
HTML elements that lack text within tags, such as style, script, and
comment tags. This operation is repeated until the token count
reaches a certain threshold, thus boosting overall efficiency.

Sakaoglu introduced KARTAL[73], a fine-tuned Language Model
for detecting vulnerabilities in web applications. A detector compo-
nent in the KARTAL system is controlled by the prompts from the
prompter component. These prompts are generated based on input
gathered by the fuzzer component, which monitors application

activity. The LLM detects logical vulnerabilities in web applica-
tions, specifically broken access control rules, by analyzing these
prompts. This technique allows KARTAL to dynamically alter the
definitions of broken access, allowing it to adapt to a variety of
scenarios. This adaptability distinguishes it from less intelligent
vulnerability scanners, allowing KARTAL to be more effective in
its detection capabilities.

LLMs demonstrate their capacity to be an effective method across
a wide range of vulnerability identification tasks. CyBERT [3] un-
veils a classifier for detecting cybersecurity feature claims. The
method incorporates fine-tuning a pre-trained BERT language
model to recognize cybersecurity claims throughout complex se-
quences observed in industrial control systems (ICS) device docu-
mentation. This is accomplished by aggregating reports for each
feature from every source linked with an individual device, ef-
fectively determining in-conflict feature claims. The extraction of
sequences from ICS-related documents is the initial stage in the
procedure as these sequences are classified into broad claims, device
claims, or cybersecurity claims. Then, the identified sequences are
used to train CyBERT so it can classify new sequences.

SecurityLLM, a system developed for precise threat detection and
data privacy, is presented by Ferrag et al. [26]. SecurityLLM utilizes
Fixed-Length Language Encoding (FLLE) as a privacy-preserving
encoding method, in conjunction with the Byte-level Byte-Pair En-
coder (BBPE) Tokenizer forming text traffic data. The SecurityLLM
framework is composed of two primary components: SecurityBERT,
which detects cyber threats, and FalconLLM, which responds to and
recovers from incidents. The method, which was trained on an IoT
cybersecurity dataset, displays significant accuracy in identifying
fourteen various types of cyber threats.

SecureFalcon [25] is an LLM-based cybersecurity reasoning sys-
tem targeted to detect software flaws. The method involves fine-
tuning FalconLLM with the use of a FormAI dataset including C
code instances. SecureFalcon [25] uses binary classification to dis-
tinguish between vulnerable and non-vulnerable patterns and then
validates corrected code using Bounded Model Checking. How-
ever, the study’s adaptability is limited due to the FormAI dataset’s
exclusive focus on C codes.

3.4 Respond
The Respond function involves the formulation of actions to address
the detected incident [15]. The convergence of LLMs and honeypot
paradigms enhances the capability to respond to malware threats.
In exploring this synergy, McKee et al. [57] research the feasibil-
ity of using LLMs to improve cybersecurity in a honeypot setup.
The researchers [57] demonstrate how these chatbots can create a
responsive honeypot interface capable of responding to illicit activi-
ties. This method gives security professionals more time to respond
to an ongoing cyber attack. Ten tasks connected with the develop-
ment of honeypots are divided into three primary categories by the
authors [57]: networks, operating systems, and applications. Their
results indicate that the LLM-based honeypot interfaces are able to
maintain the attacker’s interest over the course of several inquiries.
In another study, Sladic et al. [79] present an LLM-based technique
for developing software honeypots. The devised honeypot named
shelLM is designed to evaluate the credibility of the model through
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Figure 1: The present bar chart illustrates the distribution of
studies mapped to each of the five elements of the NIST Cy-
bersecurity Framework. Collected statistics indicate that the
vast amount of studies are related to Protect and Detect func-
tions emphasizing research gaps related to Identify, Respond
and particularly Recover functions over collected publica-
tions.

the use of security experts in an experiment. The specialists collab-
orated with ShelLM to assess how it responded to the commands
of an attacker. ShelLM’s ability to retain consistency over several
sessions is a significant feature; the content of each terminal session
is kept and used as a prompt for following sessions. This makes
sure that regardless of when a session comes to an end interactions
can carry on without interruption. Cambiaso et al. [9] deliver a
method for generating email messages to identified attackers in
order to engage them and squander their resources. LLMs provide
realistic responses based on human behavior, making scams less
profitable. However, such automated responses need a significant
amount of storage and computational power.

We provide a set of insights based on existing work in Table 1.
The present pattern of published papers on the use of LLMs for cyber
defense indicates that most studies are focused on the detection
and protection roles of LLMs aligning with the NIST framework.
However, a research gap, as shown in Figure 1, becomes evident in
post-attack scenarios. Given the critical roles recovery and attack
response play in the cybersecurity lifecycle, it is essential that
further studies be centered around the development of innovative
LLM-related solutions to maximize their potential in productive
post-attack scenarios.

4 ADDVERSARIAL APPLICATION OF LLMS
Applications of LLMs in cybersecurity extend beyond techniques for
defense. In our exploration, we review LLMs’ capacity to come up
with sophisticated attacks. To this end, our approach involves with
analyzing these approaches through the MITRE attack framework,
which outlines various attacker tactics.

4.1 Reconnaissance
During a reconnaissance attack, adversaries actively or passively
collect information about their target organization in order to iden-
tify upcoming operations [90]. Hazell [32] provides an illustration of
how LLMs assist during the reconnaissance stage by automating the

data collection and analysis of potential victims. As a result, LLMs
develop Python scripts to scrape websites that hold the desired
information about users. Comparably, Salewski et al. [74] enabled
the LLMs to assume various roles by introducing the prompt with
"If you were a persona", in which the target individual is substituted
for the persona.

4.2 Initial Access
The initial access tactic includes the procedures adopted by attack-
ers to obtain access as a foothold to a company’s infrastructure
[90]. Roy et al. [72] highlight the role of LLMs in delivering mali-
cious scripts where the attack structure is divided into four steps.
In this regard, design objects are used to create concepts that are
influenced by specific organizations, while credential-stealing ob-
jects are used to establish objects that require credentials, including
login buttons or input fields. Credential Transfer objects are used
to create functions that can provide the attacker with the creden-
tials submitted on phishing websites. Lastly, the exploit generation
object serves to implement a functionality based on the evasive
exploit. The authors [72] conduct a number of attacks, including
text encoding, clickjacking, polymorphic URL, and QR code-based
multi-stage attacks, to show how LLMs have the potential to be
leveraged to generate a variety of phishing attack forms.

According to Hazell et al. [32], LLMs are able to assist during the
reconnaissance stage of a spear phishing attack, a process when
attackers get sensitive information about their targets in order to
develop compelling messages. According to John et al. [40], ML-
based techniques group people according to their value and level
of participation, and then utilize the timeliness of the target users
to provide content and a phishing URL. Since people can adopt
different personas in daily life and choose a variety of terms for
a variety of circumstances, Kreps et al. [48] discuss how GPT2
can manipulate target users’ beliefs by generating stories, while
Salewski et al. [74] investigate the role of LLMs on various per-
sonas and adapt their language accordingly a process known as
in-context impersonation. Based on LLMs ability to impersonate
certain personalities, Salewski et al. [74] concluded that LLMs can
be applied to develop more effective phishing messages or social
engineering attacks. With a dataset of phishing emails, Karanjai
[42] investigates the effectiveness of generating convincing phish-
ing emails with GPT2, GPT-3, and LSTM while taking into account
the removal of HTML elements, URLs, and email addresses as well
as tokenizing the text into words.

PassGPT, an LLM-based approach to password generation and
modeling for password estimation, is presented by Rando et al. [68].
PassGPT presents the idea of guided password generation, enabling
the generation of passwords that adhere to established standards.
Moreover, PassGPT, trained on password leaks, models each token
independently, a character-by-character search space exploration
in which generated passwords are sampled according to random
restrictions.

The application of LLMs, particularly ChatGPT and AutoGPT,
in malware generation is covered by Pa Pa et al. [62]. To determine
if Auto-GPT minimizes the obstacle to malware generation, the
authors [62] investigated Auto-GPT running locally and tested it in
the following manners: initially, by providing broad prompts like
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Table 1: Classified publications concerning the defensive applications of LLMs.

Paper Year NIST Framework Application Model(s)
[45] 2023 Identify LLMs enhance cybersecurity policies. ChatGPT

[33] 2023 Protect Using LLMs for secure code development without compromising functionality. SVEN (GPT-2),
(CodeGen) LM

[83] 2023 Protect LLMs solve Capture The Flag challenges to enhance employees’
awareness and knowledge.

code-cushman-001,
code-davinci-001,code-davinci-002,

1-jumbo, j1-large, polycoder, gpt2-csrc

[64] 2023 Protect LLMs investigate software vulnerabilities.
GPT-3.5 Turbo,

Gemini,
Microsoft Bing

[10] 2023 Protect LLMs investigate software vulnerabilities. GPT-3.5 Turbo
[95] 2023 Protect Generating honeywords using LLMs. GPT-3
[20] 2018 Protect Chatbots assist security experts in identifying open ports. Rule-based

[87] 2023 Protect LLM-based URL categorization for website classification.
eXpose (Conv),

BERTiny, URLTran (BERT)
T5 Large, GPT3 Babbage

[75] 2023 Protect LLMs investigate code vulnerabilities. GPT-3
[85] 2018 Detect Detecting anomalous behavior in network logs with LLMs. RNN
[61] 2023 Detect Detection of vulnerabilities in software code. GPT-2

[28] 2023 Detect SecureBERT for anomaly detection. CyBERT,
SecureBERT (RoBERTa)

[67] 2021 Detect CyBERT, a domain-specific BERT model
to recognize specialized cybersecurity entities. BERT-based Natural Language Filter

[31] 2023 Detect Penetration testing with LLMs. GPT-3.5
[3] 2021 Detect CyBERT, a cybersecurity feature claims classifier. CyBERT, GPT-2
[6] 2022 Detect CySecBERT for malware detection and alert aggregation. CySecBERT

[6] 2022 Detect SecureBERT for processing and understandin cybersecurity text,
specifically Cyber Threat Intelligence (CTI). SecureBERT

[25] 2023 Detect Detection of vulnerabilities in software code. SecureFalcon (FalconLLM)
[79] 2023 Respond Creating honeypots related to continuously monitoring and detecting threats. GPT-3.5 Turbo (shelLM)
[57] 2023 Respond LLM as a honeypot interface against command-line attacks. GPT-3.5
[29] 2023 Detect investigates LLMs acting as red teamers in cybersecurity. GPT-4 & Bard

[46] 2023 Detect LLM for detecting phishing sites leverages a web crawler
to gather information and generate prompts. GPT-3.5 & GPT-4

[73] 2023 Detect KARTAL, a web application vulnerability detection. GPT-3.5 Turbo

[16] 2023 Detect LLMs to perform security audits on smart contracts. GPT-4 (GPT-4-32k),
Claude-v1.3-100k

[18] 2023 Detect LLM-empowered automatic penetration testing tool. PentestGPT
(GPT-3.5 & GPT-4)

[13] 2023 Detect LLMs to perform security audits on smart contracts. GPT-3.5 Turbo & GPT-4
[9] 2023 Respond Replying to the scam emails using LLM. GPT-3

"write a malware X," and next, by giving more specific malware
and attack tool functionalities. Finally, additional tests have been
explored to discover whether Anti-Virus (AV), Endpoint Detection
and Response (EDR), and VirusTotal (VT) detect the generated
malware.

4.3 Execution
Procedures resulting in adversary-controlled executable operating
on a local or remote system are referred to as execution [90]. Using
code generation tools to develop malware is one of the strategies
employed by adversaries. The feasibility of employing large textual
models to automatically generate malware along with the model’s
constraints when generating actual malware samples is studied by
Botacin [8]. According to their findings, certain malware versions
were recognized by all antivirus engines while others were not
detected by any of the engines due to the use of LLMs to modify all
or part of the malware’s building blocks. The prompt engineering
essential to develop malware that hides a PowerShell and schedules
its daily execution at a given time was brought to light by Charan
et al. [11]. In addition to copying the CMD file to a designated di-
rectory and getting the scheduled task information as a successful

malware verification, the script adds a registry value that will be
run at system startup. The LLM-based malware is assessed by Pa
pa et al. [62]. The authors [62] reported that a number of the com-
mercially available antivirus applications and Endpoint Detection
and Response (EDR) solutions failed to detect the LLM-generated
executables since some LLM-generated functions can establish con-
nections toward attackers through the victim’s machine [7].

4.4 Defense Evasion
The concept of defense evasion outlines the tactics attackers em-
ploy in order to prevent detection following a security breach [90].
According to Chatzoglou et al. [12], LLMs develop turnkey malware
which lets adversaries evade antivirus and endpoint detection and
response systems aiming to autonomous malicious code develop-
ment. Process injection, multiprocessing, junk data, shellcode mem
loading, encryption, and chosen shell code were among the tech-
niques employed in their investigation. According to Chatzoglou
et al. [12] LLMs establish an initial TCP listener that resembles an
SSH listener. This will let an attacker to connect and use Windows
native APIs to execute Command Prompt (cmd) instructions. An
open firewall port is required for the listener to function properly.
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Table 2: Classified publications concerning the adversarial applications of LLMs.

Paper Year MITRE Tactic(s) Application Model(s)
[11] 2023 Execution Generating code to perform actions that could be malicious GPT-3
[42] 2022 Initial Access Generate phishing emails to bypass spam filters GPT-2, GPT-3, RoBERTa
[7] 2022 Execution - Command & Control Use of LLMs as plug-ins to act as a proxy GPT-4
[72] 2023 Initial Access - Collection Generate Phishing Website via ChatGBT GPT-3.5 Turbo
[8] 2023 Execution Code generation and DLL injection GPT-3
[32] 2023 Initial Access - Reconnaissance Collecting victim data to develop an attack email GPT-3.5, GPT-4
[62] 2023 Initial Access - Execution - Defense Evasion Crafting malicious scripts GPT-3.5 Turbo, GPT-4, text-davinci-003
[40] 2018 Initial Access Spear Phishing link AWD-LSTM
[12] 2023 Defense Evasion Code obfuscation, file format modification GPT-3.5
[68] 2023 Initial Access - Credential Access Password guessing using LLMs GPT-2
[74] 2023 Initial Access - Reconnaissance Impersonation for phishing aims GPT-3.5 Turbo
[48] 2022 Initial Access Generating content for misinformation GPT-2
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Figure 2: Concentration of recently published papers on at-
tack approaches using LLM

Only three of the twelve antivirus applications were able to identify
malware, according to the author’s findings [12].

The study conducted by Pa Pa et al. [62] assesses the effective-
ness of malware scanners in detecting both obfuscated and non-
obfuscated forms of code generated by LLMs. In contrast to LLM-
based commonly used obfuscation techniques including base64
encoding or variable and function name modification, the authors
[62] demonstrated that generated non-obfuscated malware featured
a reduced detection rate.

The use of evasive approaches by LLMs to evade detection by
anti-phishing organizations is highlighted by Roy et al. [71]. This
study illustrates how LLMs assist attackers via clickjacking, finger-
printing browsers, or encoding content. Accordingly, the content
of the phishing website is masked using these tactics, making it
more challenging for automated anti-phishing crawlers to identify
malicious information.

4.5 Credential Access
Approaches to get credentials through key-logging or credential
dumping from a compromised machine refer to credential access
[90]. Introduced by Rando et al. [68], PassGPT is an LLM-based
password modeling solution. PassGPT uses GPT-2 architecture to
estimate password strength and guess passwords. Additionally, the
authors [68] analyze the probability distribution through passwords
defined by PassGPT. In light of this, PassGPT delivers guided pass-
word generation, enabling constraints to choose character level

randomization for the search space by setting parameters like pass-
word length or fixed characters with complete control over each
character.

4.6 Collection
Collection refers to gathering information related to the attackers
goals [90]. Methodologies that demonstrate how LLMs assist in
gathering user data are covered by Roy et al. [71]. The authors [71]
investigate the applicability of LLMs in the design of credential
taking objects with generating input forms. Furthermore, LLMs
have the capability to distribute iFrame injection code to launch ma-
licious websites within an official page. Roy et al. [71] demonstrate
a scam attack implemented via ChatGPT to gather information
without direct attempt aimed at automated data collection. The pre-
sented scam item has a hidden iFrame associated with a malicious
as well as fake Amazon webpage, guaranteeing that the iFrame
object does not activate any anti cross site scripting.

4.7 Command and Control
Attacks known as command and control arise when an attacker
uses a victim channel to connect with underlying resources [90].
By leveraging LLMs for performing shell commands on a victim’s
resource, Beckerich et al. [7] demonstrate the notion of a command
and control attack. In order to generate the executable and automate
connection between the machine used by the victim and servers,
the authors utilized an LLM-based plugin that acts as an interface
for communicating with GPT-2. This method involves utilizing a
connectivity feature to establish a connection to a certain website
that hosts an attacker’s command, followed by a query that ends
in a URL. A list of valid user agents used by plugins is maintained
regularly in order to mask the malicious component of the web
server.

Figure 2 depicts the study trends on the use of LLMs in cyberat-
tacks, and Table 2 provides a summary of the categorization. Figure
2 illustrates that initial access, defense evasion, and execution tac-
tics are the primary points of concentration for the majority of
attack methodologies. As a result, cybersecurity professionals must
to give priority to these crucial phases while developing strategic
protection methods against LLM-based attacks.
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5 CONCLUSION
In this paper, we reviewed the state-of-the-art research in the appli-
cations of Large LanguageModels (LLMs) within the realm of cyber-
security. We demonstrated that while LLMs can provide effective
solutions for strengthening defensive approaches, their potential
misuse cannot be underestimated. Hence, we categorized related
literature using the NIST cybersecurity framework and MITRE at-
tack for applications of LLMs in cyberdefense and cyberattacks,
respectively. Our review suggests that while there are numerous
works evaluating the opportunities in defensive applications of
LLMs, there is a lack of research in examining the risks of offensive
applications. We hope this study paves the way for future research
to assess the associated risks introduced by the rise of LLMs in
cybersecurity.
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