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Cyber Security Risk Management: Public Policy Implications
of Correlated Risk, Imperfect Ability to Prove Loss, and
Observability of Self-Protection

Hulisi Öğüt,1,∗ Srinivasan Raghunathan,2 and Nirup Menon3

The correlated nature of security breach risks, the imperfect ability to prove loss from a
breach to an insurer, and the inability of insurers and external agents to observe firms’ self-
protection efforts have posed significant challenges to cyber security risk management. Our
analysis finds that a firm invests less than the social optimal levels in self-protection and in
insurance when risks are correlated and the ability to prove loss is imperfect. We find that
the appropriate social intervention policy to induce a firm to invest at socially optimal levels
depends on whether insurers can verify a firm’s self-protection levels. If self-protection of
a firm is observable to an insurer so that it can design a contract that is contingent on the
self-protection level, then self-protection and insurance behave as complements. In this case,
a social planner can induce a firm to choose the socially optimal self-protection and insur-
ance levels by offering a subsidy on self-protection. We also find that providing a subsidy
on insurance does not provide a similar inducement to a firm. If self-protection of a firm is
not observable to an insurer, then self-protection and insurance behave as substitutes. In this
case, a social planner should tax the insurance premium to achieve socially optimal results.
The results of our analysis hold regardless of whether the insurance market is perfectly com-
petitive or not, implying that solely reforming the currently imperfect insurance market is
insufficient to achieve the efficient outcome in cyber security risk management.
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1. INTRODUCTION

Managing information security risk, also known
as cyber security risk, is challenging to firms and
policymakers for several reasons. First, individual
firms, whose sensitive information needs protection,
share correlated risks due to common technologies
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and computer interconnectivity. Firms conduct their
business through shared public networks, such as the
Internet, which computer hackers use to propagate
security breaches. In addition, the information tech-
nology infrastructure of firms is dominated by a few
technologies, which expose many firms to the same
vulnerabilities, leading to correlated risks.

Second, when the risk becomes reality and the
security of a firm is breached, it is often unable
to prove its loss from the breach to an insurance
company. Consequently, it is unable to justify its
claim for an insurance payout from the insurer that
matches the loss. In addition to tangible losses in-
curred from a breach, a significant portion of the loss
is intangible, such as loss of reputation, goodwill, and
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competitive intelligence.(1,2) This exacerbates the in-
ability of a firm to receive compensation for the total
losses from a breach. Another reason why a firm does
not expect to receive full compensation from insurers
for the losses from security breaches is that firms of-
ten fail to detect intrusions.(3) Managers are aware
of their failure to detect breaches. A recent survey
of information security professionals found that the
perceived probability of detecting a large data breach
(10,000 or more records) is 68%, and the perceived
probability of detecting a small data breach (100 or
fewer records) is 51%.(2)

Third, external parties, such as insurance compa-
nies and government agencies, are not able to fully
observe a firm’s self-protection efforts. Firms do not
reveal their security efforts to anyone just in case the
information gets in the hands of malcontents who are
able to find security loopholes.

The purpose of this article is to examine the role
of correlated risks and “unprovable losses” in self-
protection and insurance coverage of firms from a
public policy perspective. The need to secure na-
tional infrastructures is gaining prominence around
the world. This work elucidates the impact of inter-
vention by policymakers, such as a government or its
agencies, in the cyber security and cyber insurance
markets. We do this by first identifying the effect of
correlated risks and imperfect ability to prove loss on
firm’s protection and insurance strategies. We use in-
sights obtained from this analysis to examine how the
interventions chosen by the government would affect
the welfare of the firms involved. The interventions
considered herein are: (1) requirement of disclosure
of self-protection security efforts by all firms, that is,
make security effort publicly observable, (2) provi-
sion of subsidies to firms based on security spending,
and (3) imposition of a “sales” tax on insurance pre-
mium. The mathematical models examined in this ar-
ticle compare different combinations of interventions
and public policies to provide insights into cyber se-
curity risk management.

Our results show that risk correlation and un-
provable loss cause a firm to invest less in self-
protection, compared to the socially optimal level, re-
gardless of whether self-protection is observable by
the insurer or not. Furthermore, a firm does not also
buy the socially optimal insurance coverage because
of risk correlation and imperfect proof of loss. Sub-
sidizing self-protection and taxing insurance premi-
ums improve risk management decisions of a firm.
When the self-protection of firms is observable, a so-
cial planner could subsidize self-protection, whereas

when self-protection is not observable, the govern-
ment should tax insurance. Two different policy in-
terventions arise because self-protection and insur-
ance behave as complements when self-protection is
observable and as substitutes when self-protection is
not observable.

The rest of the article is organized as follows.
We briefly summarize the relevant literature on risk
management and insurance in the next section. In
Section 3, we describe the model framework. In Sec-
tion 4, we derive and discuss the results when insurers
can observe firms’ self-protection. In Section 5, we
analyze the case when insurers cannot observe firms’
self-protection levels. In Section 6, we show that our
results are robust to model variations. We conclude
the article with implications and a discussion of limi-
tations of our model in Section 7.

2. RELEVANT LITERATURE

The risk analysis and insurance literature is ex-
tensive, and so we discuss only the literature most
closely related to our work.4 Ehrlich and Becker(5)

and Rothschild and Stiglitz(6) are two of the seminal
papers that consider both self-protection and insur-
ance. The former paper showed that self-protection
and insurance behave as complements, assuming that
firms’ risks are uncorrelated and that firms can prove
their loss to an insurer. Rothschild and Stiglitz(6)

studied the adverse selection problem associated
with a heterogeneous risk population, and showed
that low-risk individuals are worse off than they
would be in the absence of high-risk individuals,
thus exhibiting negative externalities. See Dionne
and Harrington(7) for a review of literature in the
self-protection and insurance area. More recently,
Orszag and Stiglitz(8) analyzed the optimal size for
fire departments when the risks of a fire for home
owners are correlated, and explained that the pos-
itive externality of self-protection (against fire) led
to lower self-protection by each home owner. Their
model considered only self-protection and did not in-
clude insurance. Lakdawalla and Zanjani(9) showed
that government subsidies for terror insurance dis-
courage self-protection and limit the negative exter-
nalities of self-protection. We extend this stream of
research and develop a model for cyber security risk
management, in which risks are correlated and losses
cannot be proven.

4 The reader is referred to Harrington and Niehaus(4) for a thor-
ough review.
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Among the studies on the management of in-
formation security risk, Anderson(10) first identified
the mismatched incentives among various partici-
pants in information security that makes cyber risk
management hard. Gordon and Loeb(11) showed that
cost considerations may cause a firm to decrease
its security investment when the security vulnera-
bility increases beyond a threshold. Varian(12) and
Kunreuther and Heal(13) showed that risk correla-
tion (which they termed interdependence) reduces
a firm’s incentives to invest in security, which is
the result of the tendency of firms to free ride on
the protection availed by others’ efforts. Hausken(14)

showed that the security effort by a firm is affected
by correlated risk, attackers’ income, and whether at-
tackers are able to substitute their efforts among dif-
ferent targets. Cremonini and Nizovtsev(15) showed
that when attackers can substitute their efforts be-
tween targets, firms with a strong defense reveal their
protection levels to attackers.

Information sharing is a mechanism for miti-
gating the impact of correlated risk. Gordon, Loeb,
and Lucyshyn(16) found that when firms share secu-
rity information, they reduce investments in infor-
mation security unless appropriate incentives are in
place. Gal-Or and Ghose(17) found that security tech-
nology investments and security information sharing
act as “strategic complements.” Hausken(14) assumed
that a firm’s security effort and information received
from another firm are substitutes, and that they are
complements when the risk interdependence is neg-
ative. The papers in this group considered only self-
protection as an instrument to manage risks, but not
insurance and hence, do not provide a holistic view
of risk management.

Research on cyber insurance is limited. Majuca
et al.(18) trace the evolution of cyber insurance mar-
ket. Gordon, Loeb, and Sohail(19) proposed a few
qualitative prescriptions on using cyber insurance.
Bohme and Kataria(20) developed models and mea-
sures of risk correlation in order to understand im-
plications on cyber insurance and showed that risk
correlation between systems within a firm influences
a firm’s decision to buy insurance and risk correla-
tion among firms covered by an insurance company
determines the premium. Mukhopadhyay et al.(21)

used Bayesian belief networks to estimate probabil-
ities associated with specific security breaches and
used these probabilities to determine appropriate
cyber insurance premiums. Herath and Herath(22)

proposed that the copula methodology—combining
one-dimensional distributions into a multivariate dis-

Table I. Notation

Ui(.) Utility function (twice-differentiable, increasing,
and strictly concave) of wealth for firm i

W Initial monetary wealth of firms; W > 0
L Monetary loss to a firm when it suffers from a

loss-inflicting event; L > 0
zi Monetary self-protection of firm I; zi ≥ 0
Bi(zi, zj) Probability of a breach for firm i; Bi(zi, zj) > 0
P Probability that the loss is provable by a firm
Ii Insurance coverage taken by firm I; Ii ≥ 0
π i Insurance premium paid by firm I; π i ≥ 0
Ni W − π i − zi; the wealth of firm i when it does not

suffer any breach
Ci W − L + Ii − π i − zi; the wealth of firm i when it

suffers a breach
Oi W − L − π i − zi; the wealth of firm i when it suffers

a breach but the insurer does not cover the
breach

tribution functions—be used to price cyber insurance
products. The papers in this group focused on de-
veloping methods to price cyber insurance. They did
not study how much firms should invest in insurance
to manage the information security risk. Recently,
Bolot and LeLarge(23) showed that in the presence
of network effects and discriminatory insurance pric-
ing against firms that do not invest in protection, cy-
ber insurance can motivate firms to invest in security.
Shetty et al.(24) showed that competitive cyber insur-
ers may not improve cyber security. The above men-
tioned papers did not consider the imperfect ability
of a firm to prove loss to an insurer nor did they ad-
dress public policy issues.

3. MODEL FRAMEWORK

Consider two firms, i, j = 1, 2 (i �= j). Assume that
both firms maximize expected utilities of wealth, are
risk averse, face the possibility of loss-inflicting secu-
rity breaches, and are able to affect the probability of
loss by investing in self-protection. The notation used
in our model is summarized in Table I.

The probability of a loss to a firm, Bi(zi, zj),
depends not only on its own self-protection invest-
ment, but also on the self-protection investment of
the other firm; this feature models the correlated na-
ture of risks across firms. Bi(zi, zj) is decreasing in
zi and zj implying that the breach probability of a
firm is decreasing in a firm’s own investment as well
as the investment of the other firm in self-protection.
If the firms’ breach risks5 are uncorrelated, then the

5 We use the term risk to denote the probability of a security
breach.
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probability of breach for firm i would be denoted as
Bi(zi). We assume that Bi (zi , zj ) ≥ Bi (zi ). This as-
sumption states that for a given level of a firm’s in-
vestment, the presence of risk correlation can only in-
crease the probability of breach for that firm. We also
assume that marginal probability of breach is higher
(weakly) when risks are correlated than when they

are not, that is,
∂ Bi (zi ,zj )

∂zi
≥

∂ Bi (zi )
∂zi

.
Unprovable loss is modeled by the parameter

P, which is assumed to be independent of Bi(zi, zj).
A breach always inflicts loss L on the firm.6 Loss
L includes the tangible and intangible costs from a
breach. We assume that firms are identical with re-
spect to W, L, and P, so no firm-specific index is used
for these parameters. Finally, we use the commonly
used constant absolute risk aversion (CARA) util-
ity function given by U(x) = k − he−r x, where k and
h are constants and r is the risk aversion factor. A
higher value of r implies a higher risk aversion. As-
sume that all model parameters are common knowl-
edge to both firms.

The decision variables for a firm are Ii and zi. An
insurance contract purchased by firm i can be suc-
cinctly described by three parameters: zi, π i, and Ii. If
firm i invests zi and pays a premium of π i, then it is re-
imbursed Ii if it can prove that the loss has occurred.
We first examine, in Section 4, the case in which the
insurer is able to observe the self-protection of a firm
before accepting an insurance contract.7 This case
models reality in two ways. First, many insurers part-
ner with technology consulting firms so that they can
audit the firms’ security efforts.(30) A second scenario
is that a government legislates that a firm seeking in-
surance must reveal its security efforts to insurance
companies before insurance is taken. Both of these
scenarios are modeled by the case that the insurer is
able to observe the self-protection of a firm. Later,
in Section 5, we analyze the case in which the insurer
is not able to observe self-protection, in which case
the insurance contract to firm i is described by only
π i and Ii, that is, firm i pays a premium of π i, and is
reimbursed Ii if it proves the loss.

We assume that insurers are risk neutral. Fol-
lowing earlier studies in the insurance literature, we
assume that the insurance market is competitive.(28)

6 We assume that there is only one type of breach and it always
inflicts a fixed damage of L on the firm. Later, in Section 6, we
relax this assumption and allow L to come from a probability
distribution.

7 The insurance literature has analyzed the moral hazard arising
from information asymmetry extensively.(25−28) Moral hazard
problems arise in most principal-agent models.(29)

Doing so allows us to isolate the effects of correlated
risk and unprovable loss.8 In a perfectly competitive
insurance market, a break-even insurance policy, also
known as the actuarially fair policy (results in zero
expected profits to insurers), will be offered.(28) So, a
firm’s insurance premium is given by the expression
for the expected payout as follows:

πi − PBi (zi , zj )Ii = 0, ∀i ⇒ πi = PBi (zi , zj )Ii ,∀i.

(1)

4. SELF-PROTECTION IS OBSERVABLE

The expected utility for firm i, assuming it always
gets insurance, is given by the following:

E(Ui ) = Bi (zi , zj )PU(Ci ) + Bi (zi , zj )(1 − P)U(Oi )

+ [1 − Bi (zi , zj )]U(Ni ).
(2)

Each firm will simultaneously maximize its ex-
pected utility with respect to Ii and zi. The first-order
conditions for the utility maximization objective of
firm i are given by the following, after substituting
πi = PBi (zi , zj )Ii in Equation (2), and simplifying
the expressions:

∂E(Ui )

∂zi

=
∂Bi (zi , zj )

∂zi

{PU(Ci ) + [1 − P]U(Oi ) − U(Ni )}

−

(

1 + P
∂ Bi (zi , zj )

∂zi

Ii

)

U ′(Ci ) = 0,
(3)

∂E(Ui )

∂ Ii

= {1 − PBi (zi , zj )}U
′(Ci ) − [1 − P]Bi (zi , zj )

× U ′(Oi ) − {1 − Bi (zi , zj )}U
′(Ni ) = 0.

(4)

We show in the Appendix that a sufficient condi-
tion to obtain a unique interior equilibrium is given
by PBi (zi , zj )L > 1. This condition also ensures that
firms buy insurance in the equilibrium. An equilib-
rium in which firms do not buy insurance is un-
interesting for the public policy problem because
insurance affects the degree of self-protection under-
taken, and preferred public policy interventions are
the ones that benefit the different parties involved.

8 At the present time, the cyber insurance market is neither perfect
nor competitive because of various issues such as access to capital
markets. While we do not analyze the impact of these issues, we
speculate that these issues will increase the need for public policy
intervention in the cyber risk management domain.
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Rewriting Equation (4), we obtain:

U ′(Ci ) =

(

Bi (zi , zj )(1 − P)

1 − PBi (zi , zj )

)

U ′(Oi )

+

(

1 − Bi (zi , zj )

1 − PBi (zi , zj )

)

U ′(Ni ). (5)

Thus, in equilibrium, U ′(Ci ) is a convex combi-
nation of U ′(Oi ) and U ′(Ni ). Furthermore, substitut-
ing Equation (5) into Equation (3) and rewriting, we
get the following equation for determining the self-
protection level:

∂ Bi (zi , zj )

∂zi

=

{

1 + PIi

∂ Bi (zi , zj )

∂zi

}

U ′(Ci )

PU(Ci ) + (1 − P)U(Oi ) − U(Ni )
.

(6)

In Equation (6),
∂ Bi (zi ,zj )

∂zi
{PU(Ci ) + (1 − P)

U(Oi ) − U(Ni )} denotes the marginal increase in
the utility from self-protection because of reduced

breaches, and {1 + PIi
∂ Bi (zi ,zj )

∂zi
}U ′(Ci ) denotes the

marginal decrease in the utility from self-protection
and associated impacts on insurance premium and
insurance coverage. So, Equation (6) expresses the
familiar condition that at the optimal self-protection
level, the marginal increase equals the marginal
decrease in utility. For the CARA utility function,
we get the optimal symmetric insurance coverage
and self-protection as the following:9

I∗ + L−
1

r
ln

[

{1 − B(z∗, z∗)} + B(z∗, z∗)(1 − P)er L

1 − B(z∗, z∗)P

]

,

(7)

∂ Bi (zi , zj )

∂zi

∣

∣

∣

∣

zi =zj =z∗

=−
1

(

PI∗ +
(1 − P)(er L − 1)

r [1 − B(z∗, z∗) + B(z∗, z∗)(1 − P)er L]

) .

(8)

The following proposition is proved in Ap-
pendix.

Proposition 1: When the self-protection by a firm is

observable by insurers, then the firm

(i) buys less insurance, and

(ii) invests less in self-protection,

9 For the symmetric equilibrium, we ignore the subscript so that
z∗

i = z∗
j = z∗, I∗

i = I∗
j = I∗, Bi = Bj .

when risks are correlated and the ability to prove loss

is imperfect (provided that P < r
1+r

).

Proposition 1 highlights the adverse conse-
quence of correlated risk and unprovable loss in that
there is free-riding behavior with respect to self-
protection induced by risk correlation. By substitut-
ing P = 1 in Equation (7), we find that if a firm has
the ability to detect and prove loss, then the firm will
buy full insurance coverage whether their risks are
correlated or not. Therefore, it is the imperfect abil-
ity to prove loss, and not the correlated risk, that
reduces a firm’s incentives to buy less than full in-
surance coverage. It is well known that the positive
externality imposed by risk correlation causes a firm
to reduce its self-protection effort.(31−33) From Equa-
tion (7), we have the following:

∂ I∗

∂ P
=

1

r
ln

(

1 − Bi (z∗, z∗)P

1 − Bi (z∗, z∗) + Bi (z∗, z∗)(1 − P)er L

)

×

(

Bi (z∗, z∗){1 − Bi (z∗, z∗)}(er L − 1)

{1 − Bi (z∗, z∗)P}2

)

> 0.

(9)

Thus, as P decreases, insurance coverage de-
creases, ceteris paribus. To see how unprovable losses
affect self-protection, consider the following:

∂ I∗

∂z∗
=

∂ I∗

∂ B(z∗, z∗)

∂ B(z∗, z∗)

∂z∗

= −

[

(1 − P)(er L − 1)

{1 − PB(z∗, z∗)}2

]

∂ B(z∗, z∗)

∂z∗
> 0,

which shows that optimal self-protection and insur-
ance are complements. This implies that when both
risk correlation and imperfect ability to prove loss
are present, the free-riding behavior with respect to
self-protection level, induced by risk correlation, re-
duces a firm’s incentive to buy insurance. The incen-
tive of the firm to buy insurance, which is reduced by
the firm’s inability to prove its loss, further reduces
its incentive to invest in self-protection.

Note the similarity of our result with respect to
P, and the well-known result that moral hazard re-
duces insurance coverage. In models with moral haz-
ard (but assuming that a firm can always prove its
loss), the insurer does not offer full coverage in or-
der to induce a firm to invest more effort in self-
protection. In our model, even if the insurer does not
face moral hazard and offers full insurance, a firm
that is not able to reap full benefits from insurance
will not buy full insurance coverage. Less than full
coverage in our model is an outcome of disincentives
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on the part of insured as opposed to the fact that less
than full coverage in the moral hazard case is an out-
come of the disincentives of the insurer.

Next, we model the probability of breach in a
more specific and realistic manner. A firm incurs loss
in two ways: directly or indirectly. A direct loss event
occurs if the source of the event is the firm itself. An
indirect loss event occurs when the event occurs on
the other firm first and then spreads to the first firm.
Let

p(zi ) > 0 be a twice-differentiable, decreasing, and
strictly convex function denoting the
probability of a direct loss on firm i when
it invests zi on self-protection,

q be the probability of the loss spreading to
firm i given that firm j has incurred a loss.

The probability of a direct loss for a firm de-
pends only on its own investment in self-protection.
However, the probability of an indirect loss on firm
i, qp(zj ), depends on self-protection by the other
firm and the spread probability, q. A higher value
of q indicates that risks are more highly correlated.
Current data suggest that the value of q is about

0.15 based on the U.S. Department of Justice and
RAND Corporation survey of over 7,000 compa-
nies: http://www.ojp.usdoj.gov/bjs/abstract/cb05.htm.
Thus, we model the probability of loss, Bi(zi, zj), in
the following manner:

Bi (zi , zj ) = p(zi ) + [1 − p(zi )]qp(zj )

= 1 − [1 − p(zi )][1 − qp(zj )]. (10)

We verified that the above Bi (zi , zj ) satisfied all
the conditions we assumed for breach probability
functions.

Using a numerical example as an illustration,
Table II shows insurance coverage and self-
protection levels (in absolute dollar values) for dif-
ferent q and P values when p(z) = e−z , L = $10,
and r = 1 in the CARA utility function. Policymakers
can follow similar steps and quantify various param-
eters in the model for comparing different scenarios.
We make the following observations from the two
tables.

(1) As risk correlation and the ability to prove
loss increase (weakly), insurance coverage
decreases (weakly). This result is consistent

Table II. (A) Insurance Coverage for
Risk Correlation (q) and Ability to Prove

Loss (P); (B) Self-Protection for Risk
Correlation (q) and Ability to Prove

Loss (P)

Panel A

q\P 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0 10 7.05 6.61 6.33 6.10 5.88 5.66 5.42 5.12 4.66
0.1 10 6.08 5.23 4.60 4.05 3.51 2.91 2.16 0 0
0.2 10 5.38 4.40 3.68 3.02 2.33 0 0 0 0
0.3 10 4.88 3.81 3.00 2.16 0 0 0 0 0
0.4 10 4.47 3.32 2.30 0 0 0 0 0 0
0.5 10 4.11 2.80 0 0 0 0 0 0 0
0.6 10 3.75 0 0 0 0 0 0 0 0
0.7 10 3.38 0 0 0 0 0 0 0 0
0.8 10 2.74 0 0 0 0 0 0 0 0
0.9 10 0 0 0 0 0 0 0 0 0
1 10 0 0 0 0 0 0 0 0 0

Panel B

0 2.31 4.81 5.05 5.16 5.21 5.21 5.17 5.08 4.91 4.57
0.1 2.3 3.92 3.75 3.52 3.26 2.94 2.53 1.94 0 0
0.2 2.29 3.31 3.02 2.71 2.35 1.89 0 0 0 0
0.3 2.28 2.9 2.54 2.15 1.62 0 0 0 0 0
0.4 2.26 2.59 2.15 1.59 0 0 0 0 0 0
0.5 2.25 2.32 1.76 0 0 0 0 0 0 0
0.6 2.24 2.07 0 0 0 0 0 0 0 0
0.7 2.23 1.81 0 0 0 0 0 0 0 0
0.8 2.22 1.37 0 0 0 0 0 0 0 0
0.9 2.22 0 0 0 0 0 0 0 0 0
1 2.19 0 0 0 0 0 0 0 0 0
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Fig. 1. Impact of risk correlation (q) on insurance coverage (I) for
fixed values of ability to prove loss (P).

Fig. 2. Impact of risk correlation (q) on self-protection level (z)
for fixed levels of ability to prove loss (P).

with Proposition 1(i). Self-protection de-
creases with risk correlation, as well as with
unprovable loss (after increasing initially).
This suggests that, while an increase in risk
correlation diminishes self-protection and in-
surance, a decrease in the ability to prove loss
may actually encourage a firm to invest in self-
protection and rely less on insurance coverage
to deal with security risks.

(2) When P < 1, insurance coverage is a decreas-
ing convex function of q (see Fig. 1). Insur-
ance coverage decreases faster as P decreases.
This suggests that the marginal impact of risk
correlation in reducing insurance is enhanced
when the ability to prove loss decreases.

(3) Self-protection is a decreasing convex func-
tion of q (see Fig. 2). Self-protection decreases
faster as the level of P decreases. This suggests
that the marginal impact of risk correlation in
reducing self-protection is enhanced when the
ability to prove loss decreases.

So as P decreases, risk correlation plays a larger
role in determining I and z. Therefore, the role of
public policy is more important as P decreases.

4.1. Socially Optimal Self-Protection and Insurance

Until this point in the article, we analyzed a
firm’s self-protection level and insurance coverage
in a free market in which firms make decisions
independent of each other. When viewed as a prob-
lem for a government agency, the problem to be
solved must maximize the benefits of both firms:

Max
z1,z2,I1,I2

2
∑

i=1

E(Ui ) =

2
∑

i=1

{PBi (zi , zj )U(Ci )

+ (1 − P)Bi (zi , zj )U(Oi )

+ [1 − Bi (zi zj )]U(Ni )}.

(11)

The first-order conditions for the maximization
problem, after simplification, are the following:

∂

∂zi

2
∑

i=1

E(Ui ) = 0 =
∂ Bj (zi , zj )

∂zi

{PU(C j ) + (1 − P)

× U(Oj ) − U(Nj ) − PI j U
′(C j )}

+

(

∂ Bi (zi , zj )

∂zi

{PU(Ci ) + (1 − P)

× U(Oi ) − U(Ni )} −

{

1 + P
∂ Bi (zi , zj )

∂zi

Ii

}

× U ′(Ci )

)

,
(12)

∂

∂ Ii

2
∑

i=1

E(Ui ) = 0 = [1 − PBi (zi , zj )]U ′(Ci )

− (1 − P)Bi (zi , zj )U
′(Oi )

− {1 − Bi (zi , zj )}U
′(Ni ). (13)

Comparing Equation (12) with Equation (3),
we find that the left-hand side of Equation (12)

has an additional term, (
∂ Bj (zi ,zj )

∂zi
{PU(C j ) + (1 − P)

U(Oj ) − U(Nj ) − PI jU
′(C j )}), which represents the

increase in self-protection to reduce negative ex-
ternality for achieving the socially optimal self-
protection levels. When firms make decisions
independent of each other, they do not consider the
externality effect. We also note that Equation (13) is
identical to Equation (4), implying that if firms invest
at the socially optimal level of self-protection, then
they will also buy the socially optimal level of insur-
ance coverage. We show the following result.

Proposition 2: If risks are correlated and the ability to

prove loss is imperfect, then a firm buys less than the

socially optimal insurance coverage and invests less

than the socially optimal level of self-protection.
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The principal reason that firms invest less than
the socially optimal self-protection level is that when
firms maximize their own utility, a firm considers the
negative impact it suffers from the other firm’s in-
vestment. But it does not take into account the nega-
tive effect of its own investment on the other firm,
which is an externality. A government agency, by

maximizing the benefits of both firms at the same
time, internalizes such externalities. This results in
the finding that the socially optimal self-protection
for each firm is higher than the level of self-
protection when each firm is maximizing its own ben-
efit. Because of the complementary relationship be-
tween self-protection and insurance that we men-
tioned earlier, the socially optimal insurance cover-
age is also higher than the insurance coverage taken
when each firm is maximizing its own benefit.

The most significant implication of Proposition 2
is that, for correlated risks and unprovable losses, a
firm is more vulnerable to security breaches because
of the lower self-protection levels at all firms. Each
firm will also have to absorb more damages from
a breach because of the lower amount of insurance
coverage taken. Policymakers should address how to
mitigate these adverse impacts. For example, assum-
ing that self-protection is observable, a government
can legislate that firms invest at the socially optimal
level of self-protection and impose harsh penalties
for the failure to do so. Firms will then automatically
choose the socially optimal insurance. Recent com-
pliance regulations (e.g., Sarbanes Oxley, HIPPA,
Basel II) are efforts to legislate self-protection. How-
ever, enforcing self-protection by law and penalties
could be very costly. It may be easier for the gov-
ernment to use incentives or subsidies to achieve the
desired outcome.

4.2. A Subsidy on Self-Protection

Assume that the government offers a subsidy of
s < 1 for each dollar of investment by a firm in self-
protection. In order to fund the subsidy, the govern-
ment charges, in advance, a lump-sum tax of κ =

sz on the firm. Assume that the insurance market
is competitive as in the original model. In the pres-
ence of a self-protection subsidy, the expected utility
of firm i is given by the following:

EUi = Bi (zi , zj )PU(W − L+ Ii − π − [1 − s]zi − κi )

+ Bi (zi , zj )(1 − P)U(W − L− πi − [1 − s]zi − κi )

+ {1 − Bi (zi , zj )}U(W − πi − [1 − s]zi − κi ).

We show the following result on the optimal sub-
sidy level.

Proposition 3: When

s∗ =

∂ Bj (zi , zj )

∂zi

{PU(C j ) + (1 − P)U(Oj ) − U(Nj ) − PI jU
′(C j )}

U ′(Ci )

∣

∣

∣

∣

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

,

a firm invests at the socially optimal self-protection

level and buys the socially optimal insurance cover-

age, and 0 ≤ s∗ ≤ 1.

Note that when the expression for s∗ in Propo-
sition 3 is evaluated at the symmetric solution for z∗

and I∗, one value is obtained for s∗ that the policy-
maker is able to use for both firms. Proposition 3
shows that a subsidy on self-protection is optimal
when self-protection is observable. A subsidy im-
proves the marginal benefit from self-protection. At
the optimal level of subsidy, this improvement in the
marginal benefit from self-protection exactly offsets
the reduction in marginal benefit caused by risk cor-
relation, inducing firms to internalize the risk corre-
lation effects and to adopt the socially optimal self-
protection strategy. Once the externalities due to risk
correlation are internalized, the firms also buy the so-
cially optimal insurance coverage. While the policy of
subsidizing self-protection can be effective, it still re-
quires a government agency to monitor a firm’s self-
protection efforts. Thus, the question is whether the
government can instead achieve the same result by
intervening in the insurance market by subsidizing
the insurance premium to achieve the socially opti-
mal risk management strategy.

Proposition 4: When self-protection is observable,

there does not exist a subsidy on the insurance pre-

mium that will induce firms to adopt the socially opti-

mal strategy.

The above proposition reveals that a subsidy on
insurance premiums cannot help coordinate a firm’s
risk management decision in a manner that is so-
cially optimal. This is especially noteworthy because
a subsidy on insurance premiums should have raised
the self-protection level (recall that insurance and
self-protection are complements). So why is it that
a subsidy on self-protection works to coordinate a
firm’s risk management decision in a socially optimal
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manner, but a subsidy on insurance premium does
not? The reason is that a subsidy on self-protection
has two effects. The direct effect is that it reduces the
externality effects, thus causing firms to invest more
in self-protection. The indirect effect is that the prob-
ability of breach is reduced by the increase in self-
protection, which in turn reduces the insurance pre-
mium. Note that the premium price is a function of
the breach probability (πi = PBi Ii ). Though an in-
surance premium subsidy reduces the effective insur-
ance premium, it does not have any impact on the ex-
ternality effect due to risk correlation. Consequently,
the insurance premium subsidy is unable to achieve a
similar coordination.

5. SELF-PROTECTION IS UNOBSERVABLE

Now, more realistically, we assume that self-
protection is not observable. For example, as is the
case today, there are no regulated disclosures on self-
protection. The insurance premium will be contin-
gent only on the insurance coverage, so that Equa-
tion (1) is no longer applicable. Assume that the
insurance premium is φ per unit dollar of cover-
age so that π(Ii ) = φ Ii , φ < 1. Risks are correlated
and the ability to prove loss is imperfect as before.
The decision variables and the expression for the ex-
pected utility for a firm remain the same as when
self-protection is observable (namely, Equation (2)).
The first-order conditions are shown in the proof for
Proposition 5 in the Appendix. Solving these condi-
tions for the CARA utility function, we obtain the
following conditions for insurance coverage and self-
protection:

I∗ = L−

ln

[

φ(1 − P)er L

(1 − φ)P
+

φ{1 − B(z∗, z∗)}

[1 − φ]B(z∗, z∗)P

]

r
,

(14)

∂ Bi (zi , zj )

∂zi

∣

∣

∣

∣

zi =zj =z∗

= r Bi (zi , zj )

×

[

1 − Bi (zi , zj ) + (1 − P)Bi (zi , zj )er L

Bi (zi , zj ) − φ − (1 − P)Bi (zi , zj )er L

]
∣

∣

∣

∣

zi =zj =z∗

.

(15)

The condition Bi (zi , zj ){1 − (1 − P)er L} < φ

must hold in order that a firm invests in self-
protection in equilibrium.

Proposition 5a: When the self-protection by a firm is

not observable by an insurer and the firm’s risks are

uncorrelated with that of other firms, then the firm

buys less insurance coverage and invests more in self-

protection for unprovable losses.

Proposition 5b: When the self-protection by a firm is

not observable by an insurer, and the firm’s ability

to prove loss is perfect, then the firm invests less in

self-protection and buys more insurance for correlated

risks.

Table III compares the impact of risk corre-
lation and imperfect ability to prove loss on a
firm’s self-protection and insurance decisions for the
case of self-protection is observable and when self-
protection is not observable.

In the case of unobservable self-protection, risk
correlation increases insurance coverage, and un-
provable loss increases its self-protection (column 2
in Table III). The intuition for this lies in the in-
teraction between insurance and self-protection at
equilibrium. Using Equation (14), we find that ∂ I∗

∂z∗ =
∂ I∗

∂ B(z∗,z∗)
∂ B(z∗,z∗)

∂z∗ < 0. That is, now insurance and self-

protection behave as substitutes, so that a reduc-
tion in self-protection is accompanied by an increase
in insurance coverage, and vice versa. Because risk
correlation decreases self-protection, it increases in-
surance coverage, and because the imperfect ability
to detect loss decreases insurance, it increases self-
protection.

Next, we consider the socially optimal levels of Ii

and zi from a policy analysis viewpoint. These results
are found from the first-order conditions of Equation
(11) as shown in the Appendix.

Proposition 6: When the self-protection of a firm is

not observable by the insurer, risks are correlated

and the firm is not able to always prove loss from a

breach, the firm buys more than the socially optimal

Table III. The Impact of Observability
of Self-Protection, Risk Correlation, and

Imperfect Ability to Prove Loss

Presence of: Self-Protection Is Observable Self-Protection Is Not Observable
(Assuming P < r

1+r
)

1. Risk correlation Reduces self-protection Reduces self-protection
Reduces insurance coverage Increases insurance coverage

2. Imperfect ability Reduces self-protection Increases self-protection
to prove loss Reduces insurance coverage Reduces insurance coverage
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insurance coverage and invests less than the socially

optimal level of self-protection.

Comparing Proposition 2 with Proposition 6,
we find that, unlike the case where self-protection
is observable, the firm buys more insurance when
its self-protection is not observable. The reason for
this difference is that a firm’s insurance and its
self-protection are substitutes when self-protection
is not observable, but are complements when self-
protection is observable. This result shows that the
adverse effects of risk correlation and unprovable
loss exist even when a firm’s self-protection is not ob-
servable. Because self-protection is not observable,
risk management can be improved only by manipu-
lating insurance.10 Since firms rely more on insurance
than the socially optimal level, taxation on insurance
is one remedy to mitigate the adverse effects of risk
correlation and unprovable loss.

Assume that the government charges an insur-
ance “sales” tax of τ > 0 per unit of insurance pre-
mium paid by a firm. The government maintains rev-
enue neutrality by distributing the collected tax to all
firms by other means. Assume that such a distribu-
tion amounts to di for each firm. We assume that the
insurance market continue to price insurance at φ per
unit dollar coverage. In the presence of the insurance
tax, the expected utility of firm i is given by the fol-
lowing:

E(Ui ) = Bi (zi , zj )PU(W − L+ Ii − [1 + τ ]πi − zi + di )

+Bi (zi , zj )(1 − P)U(W − L− [1 + τ ]πi − zi + di )

+[1 − Bi (zi , zj )]U(W − [1 + τ ]πi − zi + di ).

Solving the first-order conditions with respect to
Ii and zi as shown in the Appendix in the proof of
Proposition 7, we have the following result highlight-
ing the optimality of an insurance tax to achieve so-
cially optimal outcomes.

Proposition 7: When

τ ∗ =

φ
∂ Bj (zi , zj )

∂zi

{PU(Ci ) + (1 − P)U(Oi ) − U(Ni ) − PI jU
′(C j )}

Bi (zi , zj )PU ′(Ci ) − φ
∂ Bj (zi , zj )

∂zi

{PU(Ci ) + (1 − P)U(Oi ) − U(Ni )}

∣

∣

∣

∣

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

> 0,

firms invest at the socially optimal self-protection level

and buy the socially optimal insurance coverage.

10 Obviously, a subsidy on self-protection is impossible because
self-protection is not observable.

In summary, our results in Sections 4 and 5 show
that risk correlation and unprovable loss cause a
firm to invest less in self-protection and buy less in-
surance, compared to the socially optimal level, re-
gardless of whether self-protection is observable by
the insurer or not. The corrective social policies that
we proposed in this article, namely, subsidizing self-
protection and taxing insurance premiums, improve
risk management decisions of a firm. When the self-
protection of firms is observable, a social planner
could subsidize self-protection, whereas when self-
protection is not observable, the government should
tax insurance. The optimal policy interventions dif-
fer because self-protection and insurance are com-
plements when self-protection is observable and are
substitutes when self-protection is not observable.

6. ROBUSTNESS OF RESULTS

We consider two variations of our basic model to
demonstrate that the results in this article are robust.
First, we assume that the loss from a breach is not
fixed. That is, we assume that the loss can be either
low or high according to a probability distribution.
This feature models the scenario that breaches are
not homogenous with respect to the loss that they in-
flict on firms. In the second variation, we assume that
firms invest in disaster recovery mechanisms to re-
duce the loss from a breach, in addition to investing
in self-protection to reduce the probability of breach.
We show in the following subsections that the results
of Sections 4 and 5 hold for these model variations as
well.

6.1. Heterogeneous Loss from Breach

We assume that the damage from a breach is LH

with probability p and LL with probability (1 − p).
The rest of the model is identical to the basic model
discussed in Section 3. The expected utility of firm i

is the following:

E(Ui ) = PBi (zi , zj )[pU(W − LH + Ii − πi − zi )

+ (1 − p)U(W − LL + Ii − πi − zi )]

+ (1 − P)Bi (zi , zj )[pU(W − LH − πi − zi )

+ (1 − p)U(W − LL − πi − zi )]

+ {1 − Bi (zi , zj )}U(W − πi − zi ).
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For the CARA utility function, we have the fol-
lowing expression for the utility:

EUi = PBi (zi , zj )e−r(W−πi −zi +Ii )[per LH + (1 − p)er LL]

+ (1 − P)Bi (zi , zj )e−r(W−πi −zi )[per LH + (1 − p)

× er LL] + {1 − Bi (zi , zj )}e
−r(W−πi −zi ).

Now define L̄ as er L̄ = per LH + (1 − p)er LL. Firm
i’s utility can be written as:

E(Ui ) = PBi (zi , zj )e−r(W−πi −zi +Ii −L̄)

+ (1 − P)Bi (zi , zj )e−r(W−πi −zi −L̄)

+ {1 − Bi (zi , zj )}e
−r(W−πi −zi ). (16)

Equation (16) is identical to Equation (2) except
that L is replaced by L̄. Thus, all our results derived
in Section 4 (and Section 5) can be shown to hold
when the loss from a breach is not homogeneous by
substituting L with L̄ in the proofs.

6.2. Investments in Self-Protection and
Disaster Recovery

In this variation, we assume that firm i invests
zi in self-protection and ti in disaster recovery pro-
cedures. While self-protection reduces the probabil-
ity of breach, disaster recovery procedures reduce
the damage if a firm is breached. We assume that
L is a decreasing convex function of ti and L(0) =

L0. In this case, in addition to deciding optimal self-
protection and insurance, firms also decide the op-
timal investment in disaster recovery. All other as-
pects of the model remain the same as in the basic
model.

The expected utility of firm i is the following:

E(Ui ) = Bi (zi , zj )PU(W−L(ti ) + Ii−πi−zi−ti )

+ Bi (zi , zj )(1−P)U(W−L(ti )−πi−zi−ti )

+ {1−Bi (zi , zj )}U(W−πi−zi−ti ). (17)

The first-order conditions for expected utility
maximization are given by the following:

∂ E(Ui )

∂ Ii

= 0 = {1 − Bi (zi , zj )P}Bi (zi , zj )

× PU ′(W − L(ti ) + Ii − πi − zi − ti )

− Bi (zi , zj )PBi (zi , zj )(1 − P)

× U ′(W − L(ti ) − πi − zi − ti )

− Bi (zi , zj )P{1 − Bi (zi , zj )}

× U ′(W − πi − zi − ti ), (18)

∂E(Ui )

∂zi

= 0 =
∂ Bi (zi , zj )

∂zi

[PU(W − L(ti ) + Ii − πi

− zi − ti ) + (1 − P)U(W − L(ti ) − πi − zi − ti )

− U(W − πi − zi − ti )] −

(

1 +
∂ Bi (zi , zj )

∂zi

Ii

)

× (Bi (zi , zj )PU ′(W − L(ti ) + Ii − πi − zi − ti )

+ Bi (zi , zj )(1 − P)U ′(W − L(ti ) − πi zi − ti )

+ {1 − Bi (zi , zj )}U
′(W − πi − zi − ti )), (19)

∂ E(Ui )

∂ti
= 0 = −{L′(ti ) + 1}Bi (zi , zj )PU ′(W − L(ti )

+ Ii − πi − zi − ti ) − {L′(ti ) + 1}Bi (zi , zj )

× (1 − P)U ′(W − L(ti ) − πi − zi − ti )

− {1 − Bi (zi , zj )}U
′(W − πi − zi − ti ).

(20)

Comparing Equations (18) and (19) with Equa-
tions (4) and (3), respectively, we find that Equation
(18) is same as Equation (4) and Equation (19) is
same as Equation (3), except that L is now a func-
tion of ti. Denote the optimal investment in disas-
ter recovery as t∗

i . Then, the solution to the simul-
taneous Equations (18), (19), and (20) is obtained by
substituting L(t∗

i ) for L in the solution to Equations
(3) and (4). Since the qualitative nature of our re-
sults in Section 4 does not depend on the value of
L, all of our results in Section 4 (and Section 5) hold
when firms invest in disaster recovery in addition to
self-protection. Both the analyses in this section show
that our results about the impact of risk correlation
and the inability to prove loss are applicable for a
wide variety of situations.

7. CONCLUSIONS

An important challenge faced by governments is
the management of national infrastructure security.
Information technology infrastructure has been rec-
ognized as one of the critical elements of this na-
tional infrastructure. Cyber security is characterized
by correlated risks and by the difficulty in proving the
loss to an insurer. In this article, we analyzed the im-
pact of risk correlation and unprovable loss on firms’
risk management strategies. If self-protection can be
observed so that insurance contracts are contingent
upon self-protection levels, then self-protection and
insurance behave as complements, and firms invest
in less than socially optimal levels of self-protection
and insurance coverage. In this case, the govern-
ment can induce firms to choose socially optimal
self-protection and insurance strategies by offering a
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subsidy on self-protection. But the government can-
not induce a similar behavior by offering a subsidy
on insurance. If self-protection cannot be observed
so insurance contracts depend only on the insur-
ance coverage, then self-protection and insurance be-
have as substitutes, and firms buy more than the so-
cially optimal insurance coverage and invest less than
the socially optimal level in self-protection. Rather,
the government should tax insurance premiums to
achieve the desired result.

Several interesting policy implications emerge
from our analysis. The most significant implication is
that, since the public policy instrument (intervention
in self-protection or insurance) and the type of inter-
vention (subsidy or tax) critically depend on the ob-
servability of self-protection, the social policy should
carefully evaluate the characteristics of the insurance
industry before setting policies. For example, the reg-
ulatory body should assess whether insurers have ac-
cess to firms’ security-related data and to actuarial
data. We found, contrary to the conventional wis-
dom, that controlling premium prices (which can be
controlled by ensuring a competitive insurance mar-
ket and access to actuarial data), and observability
of self-protection will not result in firms taking ad-
equate self-protection. Other intervention such as
subsidies or taxation is required in the cyber risk
domain.

As with any stylized model, our model also has
several limitations. Our analysis and results were lim-
ited to a two-firm model, but the extension to n

firms is straightforward. Our preliminary analysis of
a model with more than two firms shows that increas-
ing the number of firms is qualitatively equivalent to
increasing the degree of risk correlation, and thus in-
creasing the positive externality impact. Therefore,
an increase in the number of firms is likely to exac-
erbate the adverse impact of risk correlation and the
imperfect ability to prove loss, necessitating a more
aggressive action by social planners to achieve so-
cially optimal levels of risk management strategies.
We also assumed that the two firms are homoge-
neous. In reality, the national information technol-
ogy infrastructure includes firms of different sizes,
information technology assets, and capabilities. It is
certainly possible that smaller firms may free ride
on larger firms in managing security. This may mean
that the optimal strategy of a social planner is to
use different intervention policies for different firms.
Further research is required to understand the im-
plications of heterogeneous firms in the cyber se-
curity context. We hope that this article provides a
beginning.
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APPENDIX: PROOFS FOR PROPOSITIONS
AND COROLLARIES

Recall that Ci ≡ W − L+ Ii − πi − zi , Ni ≡ W −

πi − zi , Oi ≡ W − L− πi − zi . Ci is the wealth of firm
i when it suffers a breach and the insurer covers the
breach, Ni is the wealth of firm i when it does not
suffer any breach, and Oi is the wealth of firm i when
it suffers a breach but the insurer does not cover the
breach.

Second-Order Conditions for Utility Maximization
in Section 4

The first-order conditions for firm i are given by
Equations (3) and (4) given in the main text. The sec-
ond derivatives for the firm’s optimization model are
given by the following:

∂2 EUi

∂ I2
i

= PBi [(1 − PBi )
2U ′′(Ci ) + P(1 − P)

× B2
i U ′′(Oi ) + P(1 − Bi )BiU

′′(Ni )] < 0,

∂2 E(Ui )

∂z2
i

=−PIi

(

∂ Bi

∂zi

)2

[PU ′(Ci ) + (1 − P)

× U ′(Oi ) − U ′(Ni )] +

(

1 + P
∂ Bi

∂zi

Ii

)2

× [Bi PU ′(Ci ) + Bi (1 − P)U ′(Oi )

+ (1 − Bi )U
′(Ni )] +

(

∂2 Bi

∂z2
i

)

Bi (1 − Bi PIi )

× [PU ′(Ci ) + (1 − P)U ′(Oi )]

−

(

∂2 Bi

∂z2
i

)

{1 + (1 − Bi )PIi }U
′(Ni ).

We can verify that all terms on the right-

hand side of the above equation except ( ∂2 Bi

∂z2
i

)

Bi (1 − Bi PIi ){PU ′(Ci ) + (1 − P)U ′(Oi )} are nega-
tive. Since every factor other than (1 − Bi PIi ) in this

term is positive, the whole term as well as ∂2 E(Ui )

∂z2
i

is

guaranteed to be negative if (1 − Bi PIi ) < 0.

Proof for Proposition 1

(1) Substituting P = 1 in Equations (7) and (8),
we obtain I∗ = L and ∂ Bi

∂zi
= − 1

L
for the

scenario when the ability to prove loss is
perfect. The result about insurance follows
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from the fact 1
r

ln[ 1−B(z∗,z∗)+B(z∗,z∗)(1−P)er L

1−B(z∗,z∗)P
] >

0. The result about self-protection is proved

if (PIi +
(1−P)(er L−1)

r [1−B+B(1−P)er L]
) < L.

Substituting Equation (8) in the above, we get:

−P
1

r
ln

[

1 − B(z∗, z∗) + B(z∗, z∗)(1 − P)er L

1 − B(z∗, z∗)P

]

+
(1 − P)(er L − 1)

r [1 − B + B(1 − P)er L]
< L(1 − P).

Since −P 1
r

ln[ {1−B(z∗,z∗)}+B(z∗,z∗)(1−P)er L

1−B(z∗,z∗)P
] < 0, it is

enough to show that:

(er L − 1)

r [1 − B+ B(1 − P)er L]
< L

⇒
(er L − 1)

r [1 − B+ B(1 − P)er L]
<

1

PB
because PBL > 1.

Algebraic manipulation shows that the above in-
equality holds.

Proof for Proposition 2

Comparing Equations (3) and (12), we find that

Equation (12) has an extra term (
∂ Bj

∂zi
{PU(C j )+

(1 − P)U(Oj ) − U(Nj ) − PI jU
′(C j )}), which is

positive because
∂ Bj

∂zi
< 0 and PU(C j ) +

(1 − P)U(Oj ) − U(Nj ) − PI jU
′(C j ) < 0. Thus,

∂

∂zi

∑2
i=1 E(Ui ) >

∂ E(Ui )
∂zi

. We also know that both
∂

∂zi

∑2
i=1 E(Ui ) and ∂ E(Ui )

∂zi
are declining in zi. Conse-

quently, zi that satisfies ∂

∂zi

∑2
i=1 E(Ui ) = 0 is higher

than the one that satisfies ∂ E(Ui )
∂zi

= 0. So, the socially
optimal level of self-protection is higher than that
invested by individual firms.

Equations (4) and (13) are identical. Further-
more, ∂

∂zi
( ∂

∂ Ii
E(Ui )) < 0 and we know that z∗

i is higher
for social welfare optimization. Therefore, Ii that sat-
isfies Equation (13) is higher than Ii that satisfies
Equation (4).

Proof for Proposition 3

The first-order conditions with respect to Ii and
zi for the maximization of utility of firm i are:

∂ EUi

∂zi

=
∂ Bi (zi , zj )

∂zi

(PU(W − L+ Ii − πi − [1 − s]zi

− κi ) + (1 − P)U(W − L− πi − [1 − s]zi

− κi ) − U(W − πi − [1 − s]zi − κi ))

×

(

1 − s + P
∂ Bi (zi , zj )

∂zi

Ii

)

U ′(W − L+ Ii

− [1 − s]πi − zi − κi ) = 0,

∂EUi

∂ Ii

= {1 − PBi (zi , zj )}U
′(W − L+ Ii − πi − [1 − s]

× zi − κi ) − (1 − P)Bi (zi , zj )U
′(W − L− πi

− [1 − s]zi − κi ) − {1 − Bi (zi , zj )}U
′(W − πi

− [1 − s]zi − κi ) = 0.

When we substitute

s∗ =

∂ Bj

∂zi

{PU(C j ) + (1 − P)U(Oj ) − U(Nj ) − PI jU
′(C j )}

U ′(Ci )

∣

∣

∣

∣

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

.

and κ j = s∗z∗
s in the above first-order conditions, we

obtain Equations (12) and (13), respectively. Con-
sequently, the optimal self-protection and insurance
when

S∗ =

∂ Bj

∂zi

{PU(C j ) + (1 − P)U(Oj ) − U(Nj ) − PI jU
′(C j )}

U ′(Ci )

∣

∣

∣

∣

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

must be identical to z∗
s and I∗

s , respectively.

Since
∂ Bj

∂zi
{PU(C j ) + (1 − P)U(Oj ) − U(Nj ) −

PI jU
′(C j )} > 0 and U ′(Ci ), s∗ > 0. Furthermore,

rewriting the first of the first-order conditions, we
get:

∂E(Ui )

∂zi

= 0

=
∂ Bi

∂zi

{PU(W − L+ Ii −πi − [1 − s]zi − κi )

+ (1 − P)U(W − L−πi − [1 − s]zi − κi )

− U(W −πi − [1 − s]zi − κi )}

− P
∂ Bi

∂zi

Ii U
′(W − L+ Ii − [1 − s]πi − zi − κi )

− (1 − s)U ′(W − L+ Ii − [1 − s]πi − zi − κi ).
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Since the first term is positive and the second
term is negative, (1 − s)U ′(W − L+ Ii − [1 − s]πi −

zi − κi ) > 0. So, s∗ < 1.

Proof for Proposition 4

Assume that the social planner offers a sub-
sidy of 0 < s < 1 for each dollar of premium paid
by a firm. In order to fund the subsidy, the social
planner charges, in advance, a lump-sum tax of κ j

equal to sπ j on firm j. The external insurance mar-
ket is competitive (i.e., πi = PBi Ii ) as in our original
model. The expected utility of firm i is given by the
following:

E(Ui ) = Bi PU(W − L+ Ii − [1 − s]πi − zi − κi )

+ Bi (1 − P)U(W − L− [1 − s]πi − zi − κi )

+ (1 − Bi )U(W − [1 − s]πi − zi − κi ).

The first-order conditions for the maximization
of utility for i are:

∂ E(Ui )

∂zi

= 0 =
∂ Bi

∂zi

(PU(W − L+ Ii − [1 − s]πi − zi − κi )

+ (1 − P)U(W − L− [1 − s]πi − zi − κi )

− U(W − [1 − s]πi − zi − κi ))

−

⎛

⎜

⎜

⎝

1 + [1 − s]P
∂ Bi

∂zi

Ii

1 − s

⎞

⎟

⎟

⎠

U ′(W − L+ Ii

− [1 − s]πi − zi − κi ),

∂ E(Ui )

∂ Ii

= 0 = (1 − [1 − s]PBi )U
′(W − L+ Ii − [1 − s]

× πi − zi − κi ) − (1 − s)(1 − P)Bi U
′

× (W − L− [1 − s]πi − zi − κi ) − (1 − s)

× (1 − Bi )U
′(W − [1 − s]πi − zi − κi ).

Now, we prove the nonexistence of an s∗ that
forces firms to choose z∗

s and I∗
s by contradiction. As-

sume that when s = s∗, firms to choose z∗
s and I∗

s .
Then,

∂ E(Ui )

∂zi

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

= 0 =
∂ Bi

∂zi

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

{PU(W − L+ I∗
s

− [1 − s∗]πi − z∗
s − s∗πi ) + (1 − P)

× U(W − L− [1 − s∗]πi − z∗
s − s∗πi )

− U(W − [1 − s∗]πi − zi − κi )}

−

⎛

⎜

⎜

⎜

⎝

1 + [1 − s∗]P
∂ Bi

∂zi

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

I∗
s

1 − s∗

⎞

⎟

⎟

⎟

⎠

× U ′(W − L+ I∗
s − [1 − s∗]πi − z∗

s − s∗πi ).

Equating the left-hand side of the above to the
left-hand side of Equation (12), and simplifying, we
get:

−
s∗

1 − s∗
=

∂ Bj

∂zi

{PU(C j ) + (1 − P)U(Oj ) − U(Nj ) − PI
j
U ′(C j )}

U ′(Ci )

∣

∣

∣

∣

∣

∣

∣

∣

zi =zj =z∗
s ,Ii =I j =I∗

s

.

Note that the right-hand side of the above equa-
tion is positive, but the left-hand side is negative,
which leads to a contradiction.

Proof for Proposition 5

The first-order conditions for firm i are given by
the following:

∂ E(Ui )

∂zi

=
∂ Bi (zi , zj )

∂zi

[PU(Ci ) + (1 − P)U(Oi )

− U(Ni )] −
PBi (zi , zj )U

′(Ci )

φ
= 0,

∂ E(Ui )

∂ Ii

= (1 − φ)Bi (zi , zj )PU ′(Ci )

−[1 − P]φBi (zi , zj )U
′(Oi )

−{1 − Bi (zi , zj )}φU ′(Ni ) = 0.

When P = 1, Equation (15) becomes:

∂Bi (zi , zj )

∂zi

∣

∣

∣

∣

zi =zj =z∗

=
Bi (zi , zj ){1 − Bi (zi , zj )}

Bi (zi , zj ) − φ

∣

∣

∣

∣

zi =zj =z∗

.

Since
∂ Bi (zi ,zj )

∂zi
>

∂ Bi (zi )
∂zi

and Bi (zi , zj ) > Bi (zi ) ⇒
Bi (zi ,zj ){1−Bi (zi ,zj )}

Bi (zi ,zj )−φ
<

Bi (zi ){1−Bi (zi )}
Bi (zi )−φ

.
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Hence, optimal zi is smaller when there is risk
correlation than when there is not.

When P = 1, Equation (14) can be written as:

I = L−

ln

[

φ{1 − Bi (zi , zj )}

(1 − φ)Bi (zi , zj )

]

r
.

Since for the same zi,

Bi (zi , zj ) > Bi (zi ) ⇒
φ{1 − Bi (zi , zj )}

(1 − φ)Bi (zi , zj )

<
φ{1 − Bi (zi )}

(1 − φ)Bi (zi )
.

Hence, optimal Ii is higher when there is risk cor-
relation than when there is no risk correlation.

Proof for Proposition 6

∂

∂ Ii

1
∑

i=1

E(Ui ) = 0 = (1 − φ)Bi (zi , zj )PU ′(Ci )

− (1 − P)φBi (zi , zj )U
′(Oi )

− {1 − Bi (zi , zj )}φU ′(Ni ),

∂

∂zi

2
∑

i=1

EUi = 0 =
∂ Bj (zi , zj )

∂zi

[PU(C j ) + (1 − P)U(Oj )

− U(Nj )] +
∂ Bi (zi , zj )

∂zi

([PU(Ci ) + (1 − P)

× U(Oi ) − U(Ni )]) −

[

PBi (zi , zj )U
′(Ci )

φ

]

.

Rewrite as:

∂

∂zi

2
∑

i=1

EUi = 0 = K +
∂ Bi

∂zi

{PU(Ci ) + (1 − P)U(Oi )

− U(Ni )} − {PBiU
′(Ci ) + (1 − P)

× BiU
′(Oi ) + (1 − Bi )U

′(Ni )},

where K =
∂ Bj

∂zi
{PU(C j ) + (1 − P)U(Oj ) − U(Nj )}

> 0. When K = 0, we obtain the first-order condi-
tions for the scenario when firms maximize their own
utility.

Maximization requires that |
Uzz UzI

UIz UI I
| > 0, UI I <

0, Uzz < 0. We also have:

UIz =
∂ Bi

∂zi

[(

1 −
∂πi

∂ Ii

)

PU ′(Ci )

−
∂πi

∂ Ii

(1 − P)U ′(Oi ) +
∂πi

∂ Ii

U ′(Ni )

]

−

[(

1 −
∂πi

∂ Ii

)

PBiU
′′(Ci )

−
∂πi

∂ Ii

(1 − P)BiU
′′(Oi )

−
∂πi

∂ Ii

(1 − Bi )U
′′(Ni )

]

< 0

and Uzk > 0, IIk = 0. Therefore,

∂z

∂K
= −

∣

∣

∣

∣

∣

Uzk UzI

UIk UI I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uzz UzI

UIz UI I

∣

∣

∣

∣

∣

> 0;
∂ I

∂K
= −

∣

∣

∣

∣

∣

Uzz Uzk

UIz UIk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uzz UzI

UIz UI I

∣

∣

∣

∣

∣

< 0.

So in the social planner case, z is higher and I is
lower.

Proof for Proposition 7

∂ E(Ui )

∂zi

= 0 =
∂ Bi (zi , zj )

∂zi

(PU(W − L

+ {1 − [1 + τ ]φ}Ii − zi + di ) + (1 − P)

× U(W − L− [1 + τ ]φ Ii − zi + di )

− U(W − [1 + τ ]φ Ii − zi + di ))

−
Bi (zi , zj )PU ′(W − L+ {1 − [1 + τ ]φ}Ii − zi + di )

(1 + τ )φ
,

∂ E(Ui )

∂ Ii

= 0 = Bi (zi , zj )P{1 − [1 + τ ]φ}

× U ′(W − L+ {1 − [1 + τ ]φ}Ii − zi + di )

− (1 + τ )φ(1 − P)Bi (zi , zj )

× U ′(W − L− [1 + τ ]φ Ii + zi − di )

− (1 + τ )φ{1 − Bi (zi , zj )}

× U ′(W − [1 + τ ]φ Ii − zi + di ).

After substituting zi = zj = z∗
s , Ii = I j = I∗

s in
the above first-order conditions and equating them
to the corresponding equations for the socially opti-
mal solution, we obtain τ ∗ given in the proposition.
Furthermore, rewriting the first of the two first-order
conditions, we get:
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φ
∂ Bj

∂zi

{PU(C j ) + (1 − P)U(Oj ) − U(Nj )}

+ φ
∂ Bi

∂zi

{PU(Ci ) + (1 − P)U(Oi ) − U(Ni )}

− PBiU
′(Ci ) = 0.

Since the second term is positive, φ
∂ Bj

∂zi
{PU(C j )

+ (1 − P)U(Oj ) − U(Nj )} < PBiU
′(Ci ), So, τ ∗ > 0.
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